首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In our preliminary study, we have investigated basic properties and dynamical evolution of classical TNOs around the 7:4 mean motion resonance with Neptune (a∼43.7 AU), motivated by observational evidences that apparently present irregular features near this resonance (see [Lykawka and Mukai, 2005a. Exploring the 7:4 mean motion resonance—I. Dynamical evolution of classical trans-Neptunian objects (TNOs). Space Planet. Sci. 53, 1175-1187]; hereafter “Paper I”). In this paper, we aim to explore the dynamical long-term evolution in the scattered disk (but not its early formation) based on the computer simulations performed in Paper I together with extra computations. Specifically, we integrated the orbital motion of test particles (totalizing a bit more than 10,000) placed around the 7:4 mean motion resonance under the effect of the four giant planets for the age of the Solar System. In order to investigate chaotic diffusion, we also conducted a special simulation with on-line computation of proper elements following tracks in phase space over 4-5 Gyr. We found that: (1) A few percent (1-2%) of the test particles survived in the scattered disk with direct influence of other Neptunian mean motion resonances, indicating that resonance sticking is an extremely common phenomenon and that it helps to enhance scattered objects longevity. (2) In the same region, the so-called extended scattered TNOs are able to form via very long resonance trapping under certain conditions. Namely, if the body spends more than about 80% of its dynamical lifetime trapped in mean motion resonance(s) and there is the action of a k+1 or (k+2)/2 mean motion resonance (e.g., external mean motion resonances with Neptune described as (j+k)/j with j=1 and 2, respectively). According to this hypothetical mechanism, 5-15% of current scattered TNOs would possess thus probably constituting a significant part of the extended scattered disk. (3) Moreover, considering hot orbital initial conditions, it is likely that the trans-Neptunian belt (or Edgeworth-Kuiper belt) has been providing members to the scattered disk, so that scattered TNOs observed today would consist of primordial scattered bodies mixed with TNOs that came from unstable regions of the trans-Neptunian belt in the past.Considering the three points together, our results demonstrated that the scattered disk has been evolving continuously since early times until present.  相似文献   

2.
Transneptunian objects (TNOs) orbit beyond Neptune and do offer important clues about the formation of our solar system. Although observations have been increasing the number of discovered TNOs and improving their orbital elements, very little is known about elementary physical properties such as sizes, albedos and compositions. Due to TNOs large distances (>40 AU) and observational limitations, reliable physical information can be obtained only from brighter objects (supposedly larger bodies). According to size and albedo measurements available, it is evident the traditionally assumed albedo p=0.04 cannot hold for all TNOs, especially those with approximately absolute magnitudes H?5.5. That is, the largest TNOs possess higher albedos (generally >0.04) that strongly appear to increase as a function of size. Using a compilation of published data, we derived empirical relations which can provide estimations of diameters and albedos as a function of absolute magnitude. Calculations result in more accurate size/albedo estimations for TNOs with H?5.5 than just assuming p=0.04. Nevertheless, considering low statistics, the value p=0.04 sounds still convenient for H>5.5 non-binary TNOs as a group. We also discuss about physical processes (e.g., collisions, intrinsic activity and the presence of tenuous atmospheres) responsible for the increase of albedo among large bodies. Currently, all big TNOs (>700 km) would be capable to sustain thin atmospheres or icy frosts composed of CH4, CO or N2 even for body bulk densities as low as 0.5 g cm−3. A size-dependent albedo has important consequences for the TNOs size distribution, cumulative luminosity function and total mass estimations. According to our analysis, the latter can be reduced up to 50% if higher albedos are common among large bodies.Lastly, by analyzing orbital properties of classical TNOs (), we confirm that cold and hot classical TNOs have different concentration of large bodies. For both populations, distinct absolute magnitude distributions are maximized for an inclination threshold equal to 4.5° at >99.63% confidence level. Furthermore, more massive classical bodies are anomalously present at , a result statistically significant and apparently not caused by observational biases. This feature would provide a new constraint for transneptunian belt formation models.  相似文献   

3.
We investigate the dynamical evolution of trans-neptunian objects (TNOs) in typical scattered disk orbits (scattered TNOs) by performing simulations using several thousand particles lying initially on Neptune-encountering orbits. We explore the role of resonance sticking in the scattered disk, a phenomenon characterized by multiple temporary resonance captures (‘resonances’ refers to external mean motion resonances with Neptune, which can be described in the form r:s, where the arguments r and s are integers). First, all scattered TNOs evolve through intermittent temporary resonance capture events and gravitational scattering by Neptune. Each scattered TNO experiences tens to hundreds of resonance captures over a period of 4 Gyr, which represents about 38% of the object's lifetime (mean value). Second, resonance sticking plays an important role at semimajor axes , where the great majority of such captures occurred. It is noteworthy that the stickiest (i.e., dominant) resonances in the scattered disk are located within this distance range and are those possessing the lowest argument s. This was evinced by r:1, r:2 and r:3 resonances, which played the greatest role during resonance sticking evolution, often leading to captures in several of their neighboring resonances. Finally, the timescales and likelihood of temporary resonance captures are roughly proportional to resonance strength. The dominance of low s resonances is also related to the latter. In sum, resonance sticking has an important impact on the evolution of scattered TNOs, contributing significantly to the longevity of these objects.  相似文献   

4.
We describe a strategy for scheduling astrometric observations to minimize the number required to determine the mutual orbits of binary transneptunian systems. The method is illustrated by application to Hubble Space Telescope observations of (42355) Typhon-Echidna, revealing that Typhon and Echidna orbit one another with a period of 18.971±0.006 days and a semimajor axis of 1628±29 km, implying a system mass of (9.49±0.52)×1017 kg. The eccentricity of the orbit is 0.526±0.015. Combined with a radiometric size determined from Spitzer Space Telescope data and the assumption that Typhon and Echidna both have the same albedo, we estimate that their radii are and , respectively. These numbers give an average bulk density of only , consistent with very low bulk densities recently reported for two other small transneptunian binaries.  相似文献   

5.
We have searched 101 Classical transneptunian objects for companions with the Hubble Space Telescope. Of these, at least 21 are binary. The heliocentric inclinations of the objects we observed range from 0.6°-34°. We find a very strong anticorrelation of binaries with inclination. Of the 58 targets that have inclinations of less than 5.5°, 17 are binary, a binary fraction of . All 17 are similar-brightness systems. On the contrary, only 4 of the 42 objects with inclinations greater than 5.5° have satellites and only 1 of these is a similar-brightness binary. This striking dichotomy appears to agree with other indications that the low eccentricity, non-resonant Classical transneptunian objects include two overlapping populations with significantly different physical properties and dynamical histories.  相似文献   

6.
We have observed (66652) 1999 RZ253 with the Hubble Space Telescope at seven separate epochs and have fit an orbit to the observed relative positions of this binary. Two orbital solutions have been identified that differ primarily in the inclination of the orbit plane. The best fit corresponds to an orbital period, days, semimajor axis a=4660±170 km and orbital eccentricity e=0.460±0.013 corresponding to a system mass m=3.7±0.4×1018 kg. For a density of the albedo at 477 nm is p477=0.12±0.01, significantly higher than has been commonly assumed for objects in the Kuiper belt. Multicolor, multiepoch photometry shows this pair to have colors typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the range between 475 and 775 nm. Photometric variations at the four epochs we observed were as large as 12±3% but the sampling is insufficient to confirm the existence of a lightcurve.  相似文献   

7.
Ke Zhang  Douglas P. Hamilton 《Icarus》2007,188(2):386-399
We investigate the orbital resonant history of Proteus and Larissa, the two largest inner neptunian satellites discovered by Voyager 2. Due to tidal migration, these two satellites probably passed through their 2:1 mean-motion resonance a few hundred million years ago. We explore this resonance passage as a method to excite orbital eccentricities and inclinations, and find interesting constraints on the satellites' mean density () and their tidal dissipation parameters (Qs>10). Through numerical study of this mean-motion resonance passage, we identify a new type of three-body resonance between the satellite pair and Triton. These new resonances occur near the traditional two-body resonances between the small satellites and, surprisingly, are much stronger than their two-body counterparts due to Triton's large mass and orbital inclination. We determine the relevant resonant arguments and derive a mathematical framework for analyzing resonances in this special system.  相似文献   

8.
Hubble Space Telescope observations of Uranus- and Neptune-crossing object (65489) Ceto/Phorcys (provisionally designated 2003 FX128) reveal it to be a close binary system. The mutual orbit has a period of 9.554±0.011 days and a semimajor axis of 1840±48 km. These values enable computation of a system mass of (5.41±0.42)×1018 kg. Spitzer Space Telescope observations of thermal emission at 24 and 70 μm are combined with visible photometry to constrain the system's effective radius and geometric albedo . We estimate the average bulk density to be , consistent with ice plus rocky and/or carbonaceous materials. This density contrasts with lower densities recently measured with the same technique for three other comparably-sized outer Solar System binaries (617) Patroclus, (26308) 1998 SM165, and (47171) 1999 TC36, and is closer to the density of the saturnian irregular satellite Phoebe. The mutual orbit of Ceto and Phorcys is nearly circular, with an eccentricity ?0.015. This observation is consistent with calculations suggesting that the system should tidally evolve on a timescale shorter than the age of the Solar System.  相似文献   

9.
We explore conventional Neptune migration model with one additional planet of mass at 0.1-2.0M. This planet inhabited in the 3:2 mean motion resonance with Neptune during planet migration epoch, and then escaped from the Kuiper belt when jovian planets parked near the present orbits. Adding this extra planet and assuming the primordial disk truncated at about 45 AU in the conventional Neptune migration model, it is able to explain the complex structure of the observed Kuiper belt better than the usual Neptune migration model did in several respects, which are the following. (1) High-inclination Plutinos with i?15-35° are produced. (2) Generating the excitation of the classical Kuiper belt objects, which have moderate eccentricities and inclinations. (3) Producing the larger ratio of Neptune’s 3:2 to 2:1 resonant particles, and the lower ratio of particles in the 3:2 resonance to those in the classical belt, which may be more consistent with observations. (4) Finally, several Neptune’s 5:2 resonant particles are obtained. However, numerical experiments imply that this model is a low-probability event. In addition to the low probability, two features produced by this model may be inconsistent with the observations. They are small number of low-inclination particles in the classical belt, and the production of a remnant population with near-circular and low-inclination orbit within . According to our present study, including one extra planet in the conventional Neptune migration model as the scenario we explored here may be unsuitable because of the low probability, and the two drawbacks mentioned above, although this model can explain better several features which is hard to produce by the conventional Neptune migration model. The issues of low-probability event and the lack of low-inclination KBOs in the classical belt are interesting and may be studied further under a more realistic consideration.  相似文献   

10.
We present new analysis of HST images of (47171) 1999 TC36 that confirm it as a triple system. Fits to the point-spread function (PSF) consistently show that the apparent primary is itself composed of two similar-sized components. The two central components, A1 and A2, can be consistently identified in each of nine epochs spread over 7 years of time. In each instance, the component separation, ranging from 0.023 ± 0.002 to 0.031 ± 0.003 arcsec, is roughly one half of the Hubble Space Telescope’s diffraction limit at 606 nm. The orbit of the central pair has a semi-major axis of a  867 km with a period of P ∼ 1.9 days. These orbital parameters yield a system mass that is consistent with Msys = 12.75 ± 0.06 × 1018 kg derived from the orbit of the more distant secondary, component B. The diameters of the three components are . The relative sizes of these components are more similar than in any other known multiple in the Solar System. Taken together, the diameters and system mass yield a bulk density of . HST photometry shows that component B is variable with an amplitude of ?0.17 ± 0.05 magnitudes. Components A1 and A2 do not show variability larger than 0.08 ± 0.03 magnitudes approximately consistent with the orientation of the mutual orbit plane and tidally distorted equilibrium shapes. The system has high specific angular momentum of J/J′ = 0.93, comparable to most of the known transneptunian binaries.  相似文献   

11.
A symplectic mapping is constructed for the study of the dynamical evolution of Edgeworth-Kuiper belt objects near the 2:3 mean motion resonance with Neptune. The mapping is six-dimensional and is a good model for the Poincaré map of the real system, that is, the spatial elliptic restricted three-body problem at the 2:3 resonance, with the Sun and Neptune as primaries. The mapping model is based on the averaged Hamiltonian, corrected by a semianalytic method so that it has the basic topological properties of the phase space of the real system both qualitatively and quantitatively. We start with two dimensional motion and then we extend it to three dimensions. Both chaotic and regular motion is observed, depending on the objects' initial inclination and phase. For zero inclination, objects that are phase-protected from close encounters with Neptune show ordered motion even at eccentricities as large as 0.4 and despite being Neptune-crossers. On the other hand, not-phase-protected objects with eccentricities greater than 0.15 follow chaotic motion that leads to sudden jumps in their eccentricity and are removed from the 2:3 resonance, thus becoming short period comets. As inclination increases, chaotic motion becomes more widespread, but phase-protection still exists and, as a result, stable motion appears for eccentricities up to e = 0.3 and inclinations as high as i = 15°, a region where plutinos exist.  相似文献   

12.
We develop a parametric fit to the results of a detailed magnetohydrodynamic (MHD) study of the response of ion escape rates (O+, and ) to strongly varied solar forcing factors, as a way to efficiently extend the MHD results to different conditions. We then use this to develop a second, evolutionary model of solar forced ion escape. We treat the escape fluxes of ion species at Mars as proportional to the product of power laws of four factors - that of the EUV flux Reuv, the solar wind particle density Rρ, its velocity (squared) Rv2, and the interplanetary magnetic field pressure RB2, where forcing factors are expressed in units of the current epoch-averaged values. Our parametric model is: , where ?(i) is the escape flux of ion i. We base our study on the results of just six provided MHD model runs employing large forcing factor variations, and thus construct a successful, first-order parametric model of the MHD program. We perform a five-dimensional least squares fit of this power law model to the MHD results to derive the flux normalizations and the indices of the solar forcing factors. For O+, we obtain the values, 1.73 × 1024 s−1, 0.782, 0.251, 0.382, and 0.214, for ?0, α, β, γ, and δ, respectively. For , the corresponding values are 1.68 × 1024 s−1, −0.393, 0.798, 0.967, and 0.533. For , they are 8.66 × 1022 s−1, −0.427, 1.083, 1.214, and 0.690. The fit reproduces the MHD results to an average error of about 5%, suggesting that the power laws are broadly representative of the MHD model results. Our analysis of the MHD model shows that by itself an increase in REUV enhances O+ loss, but suppresses the escape of and , whereas increases in solar wind (i.e., in , and RB2, with Reuv constant) favors the escape of heavier ions more than light ions. The ratios of escaping ions detectable at Mars today can be predicted by this parametric fit as a function of the solar forcing factors. We also use the parametric model to compute escape rates over martian history. This second parametric model expresses ion escape functions of one variable (per ion), ?(i) = ?0(i)(t/t0)ξ(i). The ξ(i) are linear combinations of the epoch-averaged ion escape sensitivities, which are seen to increase with ion mass. We integrate the and oxygen ion escape rates over time, and find that in the last 3.85 Gyr, Mars would have lost about mbars of , and of water (from O+ and ) from ion escape.  相似文献   

13.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

14.
Impact experiments of inhomogeneous targets such as layered bodies consisting of a dense core and porous mantle were conducted to clarify the effect of the layered structure on impact strength. The layered structure of small bodies could be the result of the thermal evolution of planetesimals in the solar nebula. So, the impact disruption of thermally evolved bodies with core-mantle structure is important for the origin of small bodies such as asteroids. We investigated the impact strength of rocky-layered bodies with porous mantle-sintered cores, which could be formed at an initial stage of thermal evolution. Spherical targets composed of soda-lime glass or quartz core and porous gypsum mantle were prepared as an analog of small bodies with a core-mantle structure, and the internal structure was changed. A nylon projectile was impacted at the impact velocity from 1 to 5 km/s. The impact strength of the core-mantle targets decreases with the increase of the core/target mass ratio (RCM) in the specific energy range from 1×103 to 4×104 J/kg. We observed two distinct destruction modes characterized by the damage to the core: one shows a damaged core and fractured mantle, and the other shows an intact core and broken mantle. The former mode was usually observed with increasing RCM, and the boundary condition of the core destruction () was experimentally found to be , where is the specific energy required to disrupt a glass core. From this empirical equation, it might be possible to discuss the destruction conditions of a thermally evolved body with a porous mantle-sintered core structure. We speculate that the impact strength of the body could be significantly reduced with the progress of internal evolution at the initial stage of thermal evolution.  相似文献   

15.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

16.
17.
F. Nimmo  P.C. Thomas  W.B. Moore 《Icarus》2007,191(1):183-192
The global shape of Europa is controlled by tidal and rotational potentials and possibly by lateral variations in ice shell thickness. We use limb profiles from four Galileo images to determine the best-fit hydrostatic shape, yielding a mean radius of 1560.8±0.3 km and a radius difference ac of 3.0±0.9 km, consistent with previous determinations and inferences from gravity observations. Adding long-wavelength topography due to proposed lateral variations in shell thickness results in poorer fits to the limb profiles. We conclude that lateral shell thickness variations and long-wavelength isostatically supported topographic variations do not exceed 7 and 0.7 km, respectively. For the range of rheologies investigated (basal viscosities from 1014 to ) the maximum permissible (conductive) shell thickness is 35 km. The relative uniformity of Europa's shell thickness is due to either a heat flux from the silicate interior, lateral ice flow at the base of the shell, or convection within the shell.  相似文献   

18.
We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (∼15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4πI1550-1620 Å/4πI1030-1150 Å) which varied by approximately a factor of 6. The FUV color ratio (4πI1550-1620 Å/4πI1230-1300 Å) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B ) as composed of an allowed direct excitation component (X ) and an optically forbidden component (X followed by the cascade transition ). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations.  相似文献   

19.
20.
Classical trans-Neptunian objects (TNOs) are believed to represent the most dynamically pristine population in the trans-Neptunian belt (TNB) offering unprecedented clues about the formation of our Solar System. The long term dynamical evolution of classical TNOs was investigated using extensive simulations. We followed the evolution of more than 17000 particles with a wide range of initial conditions taking into account the perturbations from the four giant planets for 4 Gyr. The evolution of objects in the classical region is dependent on both their inclination and semimajor axes, with the inner (a<45 AU) and outer regions (a>45 AU) evolving differently. The reason is the influence of overlapping secular resonances with Uranus and Neptune (40–42 AU) and the 5:3 (a∼ ∼42.3 AU), 7:4 (a∼ ∼43.7 AU), 9:5 (a∼ ∼44.5 AU) and 11:6 (a∼ ∼ 45.0 AU) mean motion resonances strongly sculpting the inner region, while in the outer region only the 2:1 mean motion resonance (a∼ ∼47.7 AU) causes important perturbations. In particular, we found: (a) A substantial erosion of low-i bodies (i<10°) in the inner region caused by the secular resonances, except those objects that remained protected inside mean motion resonances which survived for billion of years; (b) An optimal stable region located at 45 AU<a<47 AU, q>40 AU and i>5° free of major perturbations; (c) Better defined boundaries for the classical region: 42–47.5 AU (q>38 AU) for cold classical TNOs and 40–47.5 AU (q>35 AU) for hot ones, with i=4.5° as the best threshold to distinguish between both populations; (d) The high inclination TNOs seen in the 40–42 AU region reflect their initial conditions. Therefore they should be classified as hot classical TNOs. Lastly, we report a good match between our results and observations, indicating that the former can provide explanations and predictions for the orbital structure in the classical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号