首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Abstract— This paper presents some preliminary results concerning the degradation of refractory nitrogenated polymers, which could be responsible for the CN extended source in comets. We are studying hexamethylenetetramine (HMT) and HCN polymers. Both compounds have been irradiated or heated to simulate the degradation processes they undergo in the cometary atmosphere. We show that, even if both compounds are quite stable under photolysis, the heating leads to a much more efficient degradation with the formation of HCN, NH3, and other heavier compounds. Moreover, the thermal degradation of HCN polymers appears to be more efficient than that of HMT. Thus, the HCN polymers seem to be better candidates for the CN extended source. We are now developing a new reactor to quantify the production of gaseous molecules and to detect in situ CN radicals.  相似文献   

3.
The reaction of CN? with cyanoacetylene (HC3N), has been studied as a function of the HC3N pressure in a quadrupole tandem mass spectrometer. The mass spectra revealed the fast depletion of the CN? parent ion and formation of larger anions of rapidly growing size. Most of the ions observed were found to belong to two series of products: (HC3N)x·C2p+1N? and (HC3N)x·C2pN? resulting from the sequential additions of HC3N molecules and loss of HCN or HCCN molecules. The mechanism and energetics of the first two reaction steps are briefly discussed. The laboratory data are compared with those from the Cassini CAPS-ELS spectrometer. It is believed that the reactions observed could account for the growth of anions in Titan’s ionosphere.  相似文献   

4.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

5.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

6.
Detections and upper limits to the continuum emission (1 ≤ λ ≤6 cm) and spectral line emission (OH, CO, CS, HCN, HCO+, CN, CH3CN, CH3C2H, NH3, H2O, HC3N, CH3CH2CN) are reported from radio observations of Comets 1983d and 1983e. Comparison is made with observations of CN at optical wavelengths. These results may be useful in planning future cometary observations.  相似文献   

7.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

8.
High sensitivity observations were performed at 1.2- and 3-mm wavelengths with the IRAM 30-m telescope (Spain) between April 1996 and December 1999 to investigate the nitrile composition of Titan's stratosphere. A part of our dataset consists of high resolution spectra of HC14N taken at 88.6 GHz as well as spectra of HC15N recorded at 258.16 GHz. From a thorough analysis of both lines and with the help of appropriate radiative transfer calculations we show that the isotopic ratio 15N/14N is strongly enhanced compared to the terrestrial value. We propose that the range 3.9-4.5 should be considered as a basis for the enrichment factor. Five individual lines of HC3N were measured at 39-kHz resolution using a frequency-switched technique. Several CH3CN features were recorded at 78-kHz resolution in two transitions around 147.6 and 220.7 GHz. The high spectral resolution and the good signal-to-noise ratio affecting the spectra permit us to retrieve disk-averaged vertical profiles for HCN up to 450 km and for HC3N and CH3CN up to 500 km. Comparison of our inferred vertical profiles with relevant results of presently published photochemical models is presented. We show that the profiles of HCN and HC3N predicted by various authors below 450-km altitude appear inconsistent with our new observations. We find that the three distributions present very different gradients of abundance below 200-km altitude down to the condensation levels around 80 km. In the upper stratosphere HC3N and CH3CN have approximately the same mixing ratio of about 4×10−8 at 450 km, at least one order of magnitude lower than that of HCN. In the same time, another nitrile HC5N has been searched for by observing four transitions located between 109 and 221 GHz. As no spectral features could be detected after several hours of integration time, we propose an upper limit for the mixing ratio equal to 4×10−10 assuming a uniform distribution of this compound in the lower stratosphere.  相似文献   

9.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Emission fluxes of CN, C2 and C3 carbon-bearing molecular species observed in the coma of comets Rudnicki (1967II), Ikeya-Seki (1968I), Whitaker-Thomas (1968V), and Honda (1968VI) are analysed in the framework of Haser model. CN, C3 and C3 production rates are determined using recently derived fluorescence efficiencies. The dependence of CN, C2 and C3 production rates on the heliocentric distance and the possible correlations among these radicals is studied. It is shown that comets Ikeya-Seki (1968I) and Honda (1968VI) have the same mean color indices (B-V) and (U-B).  相似文献   

11.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

12.
The Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (∼1000 km) show evidence for negatively charged ions up to ∼10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN, C3N/C4H and C5N. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes.  相似文献   

13.
A model is presented for the formation of HCN in the upper troposphere and lower stratosphere of Jupiter by ultraviolet photolysis of the C2H5N isomer aziridine, a product of the recombination of NH2 and C2H3 radicals, which originate, respectively, from ammonia photolysis and addition of H atoms to acetylene. An HCN column density of ~ 2 × 1017 cm?2 in the tropopause region, which is comparable to that observed by A. T. Tokunaga, S. C. Beck, T. R. Geballe, J. H. Lacy, and E. Serabyn (Icarus48, 283–289, 1981), is predicted when vertical mixing is slow above the ammonia cloudtops. Sensitivity of the HCN column density to the individual rate constants and the eddy diffusion coefficient profile is discussed, as is the possibility of the existence of additional HCN-yielding pathways. Ammonia, which is saturated in the upper troposphere, is strongly depleted by photolysis in the lower stratosphere. Phosphine is also strongly depleted by photolysis and its abundance in the upper troposphere is shown to depend strongly on vertical mixing in the tropopause region. The possibility of the formation of phosphirane, the P-containing analog of aziridine, is considered but found to be substantially less probable than aziridine.  相似文献   

14.
We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH2 (0,9,0) 610 nm bands using UVES at UT2 we determined 12C/13C = 90 ± 10 and 14N/15N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH3 of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C3 and C2 production rates and the parent and daughter scale lengths up to 5.2 105 km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H2O, HCN, C2H2, CH4, C2H6, and CH3OH.  相似文献   

15.
The bright comet Hale–Bopp provided the first opportunity to follow the outgassing rates of a number of molecular species over a large range of heliocentric distances. We present the results of our observing campaign at radio wavelengths which began in August 1995 and ended in January 2002. The observations were carried out with the telescopes of Nançay, IRAM, JCMT, CSO and, since September 1997, SEST. The lines of nine molecules (OH, CO, HCN, CH3OH, H2CO, H2S, CS, CH3CN and HNC) were monitored. CS, H2S, H2CO, CH3CN were detected up to rh= 3–4 AU from the Sun, while HCN and CH3OH were detected up to 6 AU. CO, which is the main driver of cometary activity at heliocentric distances larger than 3–4 AU, was last detected in August 2001, at rh= 14 AU. The gas production rates obtained from this programme contain important information on the nature of cometary ices, their thermal properties and sublimation mechanisms.Line shapes allow to measure gas expansion velocities, which, at large heliocentric distances, might be directly connected to the temperature of the nucleus surface. Inferred expansion velocity of the gas varied as rh -0.4 within 7 AU from the Sun, but remained close to 0.4 km s-1 further away. The CO spectra obtained at large rhare strongly blueshifted and indicative of an important day-to-night asymmetry in outgassing and expansion velocity. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about 10 K at 7 AU to 110 K around perihelion.  相似文献   

16.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   

17.
The results of the multiaperture photometry of Comet Shoemaker-Levy 1991 T2 in the pre-perihelion and P/deVico in the post-perihelion period with the narrowband CN, C2 and Blue Continuum (BC) IHW filters are presented. A Haser model of the molecular coma was used for the determination of the parent and daughter scale-lengths and production rates of the radicals. The comets showed some substantial differences between their parent scale-lengths. The CN parent scale-length (at 1.0 AU) was 16×103 km for Comet Shoemaker-Levy and 39×103 for P/deVico, the C2 parent scale-lengths were respectively 29×103 and 54×103 km. Such divergences could be interpreted in the frame of different scenarios of emission of cometary parents, either from a nucleus or from a volume source. The daughter scale-lengths for these comets were quite similar, namely: 306×103 and 318×103 km for CN and 69×103 and 66×103 km for C2. We determined the Afρ parameter for apertures of different radii. A Monte Carlo model of the dust coma was used to obtain the dust ejection velocity. It was of the order of 0.1 km s−1 for both comets. The power index of the distribution of the β-parameter of dust particles (ratio of light pressure to the solar gravitation) was of the order of 3 for C/Shoemaker-Levy and close to 2 for P/deVico. The dependence on heliocentric distance (rh) of the radical and dust production rates for P/deVico in the range of 0.7-1.0 AU was described by the power law function with a power index equal to: 5.55±0.14 for CN, 5.70±0.24 for C2 and 5.22±0.19 for dust. Relative abundances of the dynamically new Comet Shoemaker-Levy and short-period P/deVico were quite similar with an enhancement of C2 comparing with standard values taken from A'Hearn et al. (1995).  相似文献   

18.
Simon Petrie 《Icarus》2004,171(1):199-209
We report results of quantum chemical calculations of Mg+/ligand bond dissociation energies involving ligands identified as major constituents of Titan's upper atmosphere. Trends identified in these results allow elucidation of the important bimolecular and termolecular reactions of Mg+, and of simple molecular ions containing Mg+, arising from meteoric infall into Titan's atmosphere. Our study highlights, and includes calculated rate coefficients for, crucial ligand-switching and ligand-stripping reactions which ensure that a dynamic equilibrium exists between atomic and molecular ions of Mg+. Neutralization of ionized meteoric Mg is expected to produce the radical MgNC in high yield. The highly polar MgNC radical should provide an excellent nucleation site for condensation of polar (e.g., HCN, CH3CN, and HC3N) and highly unsaturated (e.g., C2H2, C4H2, and C2N2) neutrals at comparatively high altitude, leading to precipitation of Mg-doped tholin-like material. The implications for Titan's prebiotic chemical evolution, of the surface deposition of such material (which may feasibly contain magnesium porphyrins, or other bioactive Mg-containing complexes) remain to be assessed.  相似文献   

19.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

20.
The results of the photoelectric photometry with the narrowband CN, C3, C2 and Blue Continuum (BC) IHW interference filters are presented. Observations were carried out with a set of diaphragms of different effective radii. On the base of the Haser model the production rates of the radicals have been obtained. The CN and C2 molecules scale lengths (3.4 × 105 km and 8.5 × 104 km respectively for 1.0 AU heliocentric distance) have been also derived. The dust continuum spectrum is negligibly low in comparison with the molecular one, which stay in agreement with the results of other observations of comet Okazaki-Levy-Rudenko.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号