首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate why the spectral type of most cataclysmic variable (CV) secondaries is significantly later than that of a zero-age main-sequence (ZAMS) star with the same mean density. Using improved stellar input physics, tested against observations of low-mass stars at the bottom of the main sequence, we calculate the secular evolution of CVs with low-mass donors. We consider sequences with different mass transfer rates and with a different degree of nuclear evolution of the donor prior to mass transfer.
Systems near the upper edge of the gap ( P ∼3–6 h) can be reproduced by models with a wide range of mass transfer rates from 1.5×10−9 M yr−1 to 10−8 M yr−1. Evolutionary sequences with a small transfer rate and donors that are substantially evolved off the ZAMS (central hydrogen content 0.05–0.5) reproduce CVs with late spectral types above P ≳6 h. Systems with the most discrepant (late) spectral type should have the smallest donor mass at any given P .
Consistency with the period gap suggests that the mass transfer rate increases with decreasing donor mass for evolved sequences above the period gap. In this case, a single-parameter family of sequences with varying X c and increasing mass transfer rate reproduces the full range of observed spectral types. This would imply that CVs with such evolved secondaries dominate the CV population.  相似文献   

2.
In an attempt to model the accretion on to a neutron star in low-mass X-ray binaries, we present 2D hydrodynamical models of the gas flow in close vicinity of the stellar surface. First, we consider a gas pressure-dominated case, assuming that the star is non-rotating. For the stellar mass we take   M star= 1.4 × 10−2 M  and for the gas temperature   T = 5 × 106 K  . Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T ≃ 108 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.  相似文献   

3.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

4.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

5.
We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of systems in the orbital period range 80–86 min. We identify this feature as the elusive 'period minimum spike' predicted by CV population models, which resolves a long-standing discrepancy between compact binary evolution theory and observations. We show that this spike is almost entirely due to the large number of CVs with very low accretion activity identified by SDSS. The optical spectra of these systems are dominated by emission from the white dwarf photosphere, and display little or no spectroscopic signature from the donor stars, suggesting very low mass companion stars. We determine the average absolute magnitude of these low-luminosity CVs at the period minimum to be  〈 Mg 〉= 11.6 ± 0.7  . Comparison of the SDSS CV sample to the CVs found in the Hamburg Quasar Survey and the Palomar Green Survey suggests that the depth of SDSS is the key ingredient resulting in the discovery of a large number of intrinsically faint short-period systems.  相似文献   

6.
A time-resolved spectroscopic study of V603 Aql (Nova Aquilae 1918) is presented. An orbital period of P orb=01385±00002, consistent with previous results, and a radial velocity semi-amplitude of K =20±3 km s1 are obtained from the radial velocity variations of the H emission line. Similar K values are also found in H , H , and He  i emission lines. Using the measured FWHM of the H line and assuming that the derived semi-amplitude is that of the white dwarf, we deduce a most likely mass ratio of q =0.24±0.05 and stellar masses of M 2=0.29±0.04 M and M 1=1.2±0.2 M for the secondary and primary (the white dwarf) star, respectively. The dynamical solution also indicates a very low orbital inclination, i =13°±2°. We find that the continuum and line variations are modulated with both the positive and the negative superhump periods, indicating that they arise from similar regions of the accretion disc. Moreover, we find, for the first time from spectroscopy, evidence of negative superhumps in addition to the positive superhumps. Positive superhumps are explained within the disc instability model as caused by an eccentric disc surrounding the white dwarf, which is precessing (apsidal advance) because of tidal instabilities, causing the observed positive superhumps. A nodal precession in the accretion disc is currently believed to be the cause of the observed negative superhumps. The low value of q is consistent with the expected value for systems that show superhumps, in accordance with the eccentric disc model. We find no evidence of periodicity associated with the spin period.  相似文献   

7.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

8.
We present an analysis of the secular variability of the longitudinal magnetic field B e in the roAp star γ Equ (HD 201601). Measurements of the stellar magnetic field B e were mostly compiled from the literature, and we appended also our 33 new B e measurements which were obtained with the 1-m optical telescope of the Special Astrophysical Observatory (Russia). All the available data cover the time period of 58 yr, and include both phases of the maximum and minimum B e. We determined that the period of the long-term magnetic B e variations equals  91.1 ± 3.6 yr  , with   B e(max) =+577 ± 31 G  and   B e(min) =−1101 ± 31 G  .  相似文献   

9.
Two nights of phase-resolved medium-resolution Very Large Telescope spectroscopy of the extra-galactic low-mass X-ray binary LMC X−2 have revealed a 0.32 ± 0.02 d spectroscopic period in the radial velocity curve of the He  ii λ4686 emission line that we interpret as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disc in LMC X−2. This is strengthened by He  ii λ4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X−2, with a velocity of   K em= 351 ± 28 km s−1  , that we tentatively interpret as coming from the irradiated side of the donor star. Since K em must be smaller than K 2, this leads to the first upper limit on the mass function of LMC X−2 of   f ( M 1) ≥ 0.86  M  (95 per cent confidence), and the first constraints on its system parameters.  相似文献   

10.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary-to-primary stellar mass ratio should be  0.003 ≲ ( M 2/ M 1) ≲ 0.15  . A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low-flash luminosity. A too low-mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can, however, produce a quite luminous but short flash when colliding with a low-mass main-sequence star.
Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis-type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to  ∼106 L  followed by a slow decline at very low effective temperatures.  相似文献   

11.
Phase-resolved medium-resolution VLT spectroscopy of the low-mass X-ray binary GX 9+9 has revealed narrow C  iii emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230 ± 35 km s−1. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of   f ( M 1) ≥ 0.22 M  . Rotational broadening estimates together with assumptions for the mass donor give  0.07 ≤ q ≤ 0.35  and  182 ≤ K 2≤ 406 km s−1  . Despite a low-mass ratio, there is no evidence for a superhump in our data set. Doppler maps of GX 9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disc rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally, we note that the Bowen region in GX 9+9 is dominated by C  iii instead of N  iii emission as has been the case for most other X-ray binaries.  相似文献   

12.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

13.
Intermediate-resolution (0.5–1 Å) optical spectroscopy of the cataclysmic variable (CV) SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio and spectral classification. We find that the donor star has spectral-type G8 ± 2 V and orbits the white dwarf with   P = 0.382 3753 ± 0.000 0003  d,   K 2= 88.0 ± 2.9  km s−1 and   V sin  i = 75.5 ± 6.5  km s−1. Our values are significantly different from previous works and lead to   q = M 2/ M 1= 1.18 ± 0.14  . This is one of the highest mass ratios known in a CV and is very robust, because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main sequence or descendant from a massive star which underwent an episode of thermal time-scale mass transfer.  相似文献   

14.
We analyse high time resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile.
We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed ' S -wave' in the binary's spectrogram. We measure a spectroscopic period   P V803 Cen= 1596.4 ± 1.2 s  of the S -wave feature, which is significantly shorter than the 1611-s periods found in previous photometric studies. We conclude that the latter period likely represents a 'superhump'. If one assumes that our S -wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at   q ∼ 0.07  rather than   q ∼ 0.016  . This relaxes the constraints on the masses of the components considerably: the donor star then does not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit.
For HP Lib, we similarly measure a spectroscopic period   P HP Lib= 1102.8 ± 0.2 s  . This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.  相似文献   

15.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

16.
The Sloan Digital Sky Survey has been instrumental in obtaining a homogeneous sample of the rare AM CVn stars: mass-transferring binary white dwarfs. As part of a campaign of spectroscopic follow-up on candidate AM CVn stars from the Sloan Digital Sky Survey, we have obtained time-resolved spectra of the   g = 20.2  candidate SDSS J155252.48+320150.9 on the Very Large Telescope of the European Southern Observatory. We report an orbital period   P orb= 3376.3 ± 0.3 s  , or 56.272 ± 0.005 min, based on an observed 'S-wave' in the helium emission lines of the spectra. This confirms the ultracompact nature of the binary. Despite its relative closeness to the orbital period minimum for hydrogen-rich donors, there is no evidence for hydrogen in the spectra. We thus classify SDSS J1552 as a new bona fide AM CVn star, with the second-longest orbital period after V396 Hya  ( P = 65.5 min)  . The continuum of SDSS J1552 is compatible with either a blackbody or helium atmosphere of   T eff= 12 000–15 000 K  . If this represents the photosphere of the accreting white dwarf, as is expected, it puts the accretor at the upper end of the temperature range predicted by thermal evolution models. This suggests that SDSS J1552 consists of (or formerly consisted of) relatively high-mass components.  相似文献   

17.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

18.
In this paper we report on optical spectroscopic observations of the low-mass X-ray binary 2S 0921–630 obtained with the Very Large Telescope. We found sinusoidal radial velocity variations of the companion star with a semi-amplitude of  99.1 ± 3.1 km s−1  modulated on a period of 9.006 ± 0.007 d, consistent with the orbital period found previously for this source, and a systemic velocity of  44.4 ± 2.4 km s−1  . Owing to X-ray irradiation, the centre of light measured by the absorption lines from the companion star is probably shifted with respect to the centre of mass. We try to correct for this using the so-called K -correction. Conservatively applying the maximum correction possible and using the previously measured rotational velocity of the companion star, we find a lower limit to the mass of the compact object in 2S 0921–630 of   MX sin3 i > 1.90 ± 0.25 M  (1σ errors). The inclination in this system is well constrained since partial eclipses have been observed in X-ray and optical bands. For inclinations in the range  60° < i < 90°  we find  1.90 ± 0.25 < MX < 2.9 ± 0.4 M  . However, using this maximum K -correction we find that the ratio between the mass of the companion star and that of the compact object, q , is 1.32 ± 0.37, implying super-Eddington mass-transfer rates; however, evidence for that has not been found in 2S 0921–630. We conclude that the compact object in 2S 0921–630 is either a (massive) neutron star or a low-mass black hole.  相似文献   

19.
We present charge-coupled device (CCD) photometry, light curve and time-series analysis of the classical nova V2275 Cyg (N Cyg 2001 No. 2). The source was observed for 14 nights in total in 2002 and 2003 using an R filter with the 1.5-m Russian–Turkish joint telescope (RTT150) at the TUBITAK National Observatory in Antalya, Turkey, as part of a large programme on the CCD photometry of cataclysmic variables. We report the detection of two distinct periodicities in the light curve of the nova: (a)   P 1= 0.314 49(15) d [7.6 h]  , and (b)   P 2= 0.017 079(17) d [24.6 min]  . The first period is evident in both 2002 and 2003 whereas the second period is only detected in the 2003 data set. We interpret the first period as the orbital period of the system and attribute the orbital variations to aspect changes of the secondary irradiated by the hot white dwarf (WD). We suggest that the nova was a supersoft X-ray source in 2002 and, perhaps, in 2003. The second period could be a quasi-periodic oscillation originating from the oscillation of the ionization front (due to a hot WD) below the inner Lagrange point or a beat frequency in the system as a result of the magnetic nature of the WD if steady accretion has already been re-established.  相似文献   

20.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号