首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钙质砂广泛分布于热带海岸地区,其抗剪强度较低,在较高应力条件下极易破碎。因此,对以钙质砂为主要原料的地基材料进行加固,是海洋岩土工程领域的研究热点。基于尿素水解过程的碳酸钙成矿技术(MICP)是近年来地基材料加固领域的一项新技术。目前广泛使用的生物强化法实现MICP存在成本昂贵及环境适应性差等问题,制约了其大规模工程应用。研究采用原位生物激发MICP法对钙质砂进行加固,并对加固后试样开展直剪和一维压缩试验。结果表明:原位生物激发MICP方法可以在钙质砂中形成有效胶结,胶结水平最大可达6.26%。采用高浓度胶结溶液或增加注射次数可提高胶结水平。同时,加固后钙质砂的最大应力比、最大剪胀角以及残余内摩擦角均随胶结水平增加而显著增大,但竖向应力水平增大会抑制这些力学指标的增大。随胶结水平升高,试样压缩性显著减小;压缩后的原位激发MICP加固钙质砂中,细颗粒与粗颗粒的比例均随胶结水平的增加而增大。  相似文献   

2.
钙质砂是中国南海岛礁工程建设的主要建筑材料和地基土成份,其具有高孔隙、易破碎和强度低等不良工程地质特性。为改善钙质砂力学性能,提高其工程可靠性,提出利用微生物诱导碳酸钙沉积(MICP)协同纤维加筋改性钙质砂。文章通过开展无侧限抗压试验以及扫描电镜测试,对比分析不同纤维掺量下MICP固化钙质砂的力学响应特性及微观破坏机理。结果表明:(1)MICP技术能够有效固化钙质砂,并提升其力学强度;(2)纤维能够增加细菌定殖面积,提升碳酸钙沉积量,并由此提升试样延性和韧性,降低刚度;(3)应力应变曲线呈阶梯状多峰特征。在应力上升阶段,砂颗粒和碳酸钙会发生局部破碎;在峰后应力下降阶段,碳酸钙、砂颗粒、纤维的胶结作用增强了纤维的抗拔性能,限制了破坏面的发展;(4)碳酸钙、砂颗粒、纤维的耦合胶结作用是纤维加筋改善试样韧性、延性的根本原因。  相似文献   

3.
针对微生物诱导碳酸钙沉积 (MICP)固化钙质砂脆性强、抗拉强度低等问题,通过制备“8”字形MICP固化钙质砂试样并开展直接拉伸试验,对纤维加筋的改善作用、纤维-MICP联合加固机理及纤维掺量、纤维长度等影响因素进行了研究。结果表明:纤维加筋能够显著提高抗拉强度、峰值位移和残余强度,减轻峰值强度点的脆性破坏现象,但受纤掺量和长度的影响,总的来说,抗拉强度随纤维掺量的增加和长度的加长呈先增后减的趋势。相比无纤维试样,添加最优纤维掺量(0.6%)时,试样的抗拉强度增长了172.4%,峰值变形提升了158.1%。机理可解释为纤维增加了微生物的吸附量,促进碳酸钙在纤维与钙质砂之间以及纤维表面的沉积,增大纤维与钙质砂之间的界面作用力,整体提升钙质砂的抗拉强度特性。纤维的添加能够显著改变试样的变形特征,无纤维添加试样曲线仅有初始误差阶段和弹性阶段两个阶段,添加纤维后曲线表现为四个阶段包括初始误差阶段、弹性阶段、损伤破坏阶段和残余阶段。纤维掺量影响的内因是纤维与钙质砂的界面作用力和纤维空间分布状态随纤维掺量的变化而变化,纤维长度的影响主要和破坏面附近纤维数量和单位长度所能承担的拉应力相关。研究成果对以钙质砂为地基的岛礁工程的稳定性、安全性具有一定的指导意义。  相似文献   

4.
活性炭固定微生物固化贵阳红黏土力学特性   总被引:2,自引:0,他引:2  
杨恒  陈筠  白文胜  高彬  施鹏超 《中国岩溶》2019,38(4):619-626
微生物能够固化土体,但是在固化强度上还有待提高。为了增强微生物固化土体的力学特性,文章提出固定化微生物技术与微生物诱导碳酸钙沉淀技术(MICP)相结合的方法,即将掺量为0、4%、7%、10%、15%的活性炭与重塑红黏土均匀混合后,再通过MICP固化土体后进行常规三轴压缩试验,同时进行相同条件下在菌液瓶中有无胶结液与活性炭的生成碳酸钙的对比试验、有无活性炭重塑红黏土的常规三轴压缩对比试验。通过扫描电镜分析,得到试样的力学特性、活性炭在MICP过程中的作用、微观结构等试验结果。试验结果表明:在微生物固化土体过程中,活性炭作为固定微生物的载体,在MICP过程中对微生物起到“增效”的作用,在微生物诱导碳酸钙沉淀过程中提高了碳酸钙产量;同时,活性炭的有无及含量多少对微生物固化土体有重要影响,结合水膜厚度改变、碳酸钙填充孔隙及胶结作用使得红黏土抗剪强度有效C值大幅增加,有效φ值减小,剪应力峰值增加;加入活性炭使生物矿化环境得到优化,并在碳酸钙结晶时对晶体结构、形态产生了一定的控制作用,生成了以活性炭为“核心”具有一定结构的块体,而使土体的力学特性增强。该研究成果对微生物岩土技术以及工程应用具有重要价值。   相似文献   

5.
使用天然海水进行微生物培养并诱导碳酸钙沉淀(MICP)加固钙质砂试验,首先通过微生物的生长繁殖情况和脲酶活性的变化研究海水对微生物的影响。然后,根据MICP加固前后钙质砂渗透性和无侧限抗压强度(UCS)的变化评价海水对MICP加固效果的影响。最后,利用SEM和XRD测试分析海水影响MICP加固钙质砂效果的机制。结果表明:(1)天然海水使微生物的生长出现滞后期,但稳定期的微生物数量和脲酶活性与淡水环境下相差不大;(2)使用海水MICP加固钙质砂的效果与淡水条件下相比差别较小,钙质砂的渗透系数可降低一个数量级,UCS值可达1.7 MPa;(3)海水条件下MICP过程受到海水成分、微生物、钙离子浓度、尿素浓度和p H值等因素的调控,主要沉积的碳酸钙晶型为方解石,方解石填充了粒间孔隙,使砂颗粒胶结为整体,这是钙质砂力学性能提高的主要原因。  相似文献   

6.
黏土掺入生物炭后的持水特性及其影响机制   总被引:1,自引:0,他引:1  
李明玉  孙文静 《岩土力学》2019,40(12):4722-4730
生物炭具有疏松多孔、高比表面积和强吸附等特性,在土体改良以及修复受污染土体方面展现出应用潜力。添加生物炭可改善土体结构,进而增强土体持水特性等,其中,生物炭掺量和粒径对改良效果有较大的影响。为了研究生物炭掺量和粒径对生物炭?黏土混合土持水特性的影响,通过蒸汽平衡法控制土样的吸力,确定吸力平衡后土样的含水率和体积等,得到吸湿过程中不同生物炭掺量(0%、5%、10%和15%)、不同粒径范围(>74、40~74、20~40 μm和<74 μm)生物炭?黏土混合土在高吸力(3.29~286.7 MPa)范围的土?水特征曲线,并结合扫描电镜(SEM)和压汞(MIP)试验结果分析其微观孔隙结构。试验结果表明:(1)当掺入生物炭的粒径较小时,随着生物炭掺量的增加,土样的持水特性有较明显的提高,随着掺入生物炭粒径的增大,生物炭掺量对土样的持水特性影响不大。(2)当生物炭的掺量较少时,不同粒径生物炭?黏土混合土的土?水特征曲线基本相同,随着生物炭掺量提高,小粒径生物炭对混合土持水特性的影响逐渐显现。(3)由生物炭?黏土混合土微观孔隙结构的演变规律进一步阐释生物炭掺量、粒径对生物炭?黏土混合土持水特性的影响机制。  相似文献   

7.
MICP联合纤维加筋改性钙质砂的动力特性研究   总被引:1,自引:0,他引:1  
王瑞  泮晓华  唐朝生  吕超  王殿龙  董志浩  施斌 《岩土力学》2022,43(10):2643-2654
为了提高我国南海钙质砂地基的抗液化性能,提出利用微生物诱导碳酸钙沉积(MICP)技术联合纤维加筋技术对钙质砂进行改性处理。通过开展动三轴试验,对比分析了改性前后钙质砂试样的动应变、动孔压、应力−应变滞回曲线以及动弹性模量的发展规律和演化特征,并结合扫描电镜(SEM)试验探究了MICP和纤维加筋技术对钙质砂的联合改性机制。研究结果表明:(1)MICP技术可以明显改善钙质砂试样的抗变形与抗液化性能,相比于未胶结处理试样,仅MICP处理试样的动应变和动孔压分别降低了95.74% 和 92.46%;(2)纤维的掺入进一步提升了MICP的改性效果,相比于仅MICP处理试样,MICP和纤维加筋联合处理试样的动应变和动孔压分别降低了 74.32%和 74.18%;(3)MICP 和纤维加筋技术通过减轻试样在循环荷载作用下的循环活动强度和能量耗散、提高试样的动弹性模量和减小动弹性模量的衰减速率,从而实现试样抗变形与抗液化性能的显著提高;(4)SEM 试验分析结果表明,MICP 与纤维对钙质砂动力特性的改善具有协同作用。纤维的掺入为细菌提供了更多的附着场所,促进了碳酸钙晶体的生成量,该部分碳酸钙不仅增加了颗粒间的胶结强度,同时也将纤维固定在砂颗粒上增强了纤维网的约束作用。  相似文献   

8.
熊雨  邓华锋  李建林  程雷  朱文羲 《岩土力学》2022,43(12):3403-3415
为了提升微生物固化砂土的效果,考虑火山灰的多孔结构及活性特征,设计进行了火山灰增强微生物诱导碳酸钙沉淀(MICP)固化砂土试验,综合宏观物理力学试验和微细观检测,系统分析了火山灰对微生物固化砂土的增强效果及增强机制。结果表明:(1)火山灰能够显著提高砂土微生物加固过程中的固菌率和胶结物产量,火山灰掺量在10%左右达到最佳,与常规MICP相比,固菌率提高了118.28%,胶结物生成量提高了29.55%。(2)火山灰的掺入提高了固化体的抗压强度和抵抗变形的能力,不同围压下固化体的抗压强度提升了52.26%~62.96%,破坏时的应变增加了100.00%~112.58%。(3)火山灰掺入后,固化体的孔隙大小及孔隙率明显减小,整体的密实性及抗渗性能进一步提升,孔隙率从20.12%减小为14.17%,渗透系数降低了一个数量级。(4)火山灰对微生物固化砂土的增强机制主要包括3个方面,一方面,火山灰在砂颗粒间起到了良好的充填作用,大幅减少了颗粒间的大孔隙,使得固化体的密实性增强;另一方面,火山灰良好的吸附作用有效提高了试样内细菌的含量,使固化体碳酸钙的产量及分布的均匀性均增加;第3方面,火山灰中的活性物质参与反应生成的胶凝物质与碳酸钙晶体形成复合凝胶体,使得固化体的胶结性能和密实程度进一步增强。  相似文献   

9.
微生物诱导碳酸钙沉积(MICP)作用是一种新型的土体改良技术。钙源作为MICP反应中重要的反应物,对微生物诱导碳酸钙沉积的效果有重要的影响。目前应用最广泛的钙源——氯化钙(CaCl2),具有成本高,环境污染性大的缺点。为此,文章提出利用石灰石粉提取钙源,通过在石灰石粉中加入乙酸溶液,释放钙离子用于微生物固化土体。通过开展无侧限抗压强度试验以及微观结构的扫描电镜观测、碳酸钙含量测定等分析,验证利用石灰石粉提取的钙源用于微生物诱导碳酸钙沉积作用固化土体的可行性,同时与醋酸钙和氯化钙固化砂柱进行了对比分析。研究结果表明:(1)石灰石粉用于微生物固化土体具有可行性,固化后砂柱的强度和碳酸钙含量较高,结构完整性高;(2)不同钙源固化砂柱的力学特性不同但均呈典型的脆性破坏模式,其中醋酸钙固化砂柱的无侧限抗压强度略高于石灰石钙源固化砂柱,氯化钙固化砂柱的无侧限抗压强度则远低于前两者且表面更加粗糙,孔隙更多,破坏后的完整性更低;(3)不同钙源固化砂柱的碳酸钙含量不同。醋酸钙和石灰石钙源固化砂柱的碳酸钙含量相近,而氯化钙固化砂柱中碳酸钙含量较低。不同钙源固化砂柱的碳酸钙含量和无侧限抗压强度基本呈正相关关系;(4)醋酸钙和石灰石钙源固化砂柱中砂土颗粒的表面和接触点间均沉积大量碳酸钙,碳酸钙晶体主要为薄片状堆叠的方解石。氯化钙固化砂柱中碳酸钙沉积量低于前两者,碳酸钙晶体主要为六面体状的方解石;(5)不同钙源主要通过影响微生物成矿过程的晶型、晶貌、晶体含量、晶体分布及胶结特征来改变固化效果。  相似文献   

10.
王绪民  郭伟  余飞  易朝  孙霖 《岩土力学》2016,37(Z2):363-368
采用2次注入菌液方式,制备不同浓度营养盐处理的微生物诱导碳酸钙沉淀(MICP)胶结砂样。通过固结排水三轴试验和碳酸钙定量化学试验测定试样强度参数及碳酸钙(CaCO3)含量,分析了营养盐浓度对胶结砂物理力学特性的影响及碳酸钙沉淀量试样强度指标间的关系。结果表明,同等反应时间、同等体积营养盐溶液条件下,随着营养盐浓度的提高试样强度逐渐升高,且达到一定峰值后再下降;碳酸钙晶体分布形态较好条件下,变形模量随着试样干密度的增加而增加;碳酸钙晶体分布形态和沉淀含量共同影响MICP试样强度的提高,试验中0.5 M试样强度提高效果最好,碳酸钙含量、黏聚力、内摩擦角分别为6.03%、46.9 kPa和41.31°。  相似文献   

11.
李明玉  孙文静  黄强  孙德安 《岩土力学》2022,43(10):2717-2725
土−水特征曲线在研究非饱和土的水力与力学特性中发挥着重要的作用。生物炭具有多孔结构、高比表面积和强吸附的特性。将生物炭改性土应用于垃圾填埋场上覆盖层,因受自然环境因素的影响会使其水力特性发生改变。为了研究全吸力范围内生物炭掺量对生物炭−黏土混合土保水特性的影响,利用蒸汽平衡法(吸力范围 3~368 MPa)、滤纸法(吸力范围 0 ~40 MPa)和压力板法(吸力范围 0~1.5 MPa)控制土样的吸力,测定吸力平衡后土样的含水率和饱和度,得到全吸力范围内生物炭−黏土混合土的土−水特征曲线。试验结果表明:(1)3种吸力测试方法很好地表达了生物炭−黏土混合土全吸力范围内的土−水特征曲线。(2)生物炭能够影响黏土的保水性,但在一定的吸力范围内,生物炭−黏土混合土的保水性还与孔隙结构和孔隙中水的形态相关。(3)通过压力板法测得,试样的进气值随着生物炭掺量的增加而减小。当吸力值小于进气值时,曲线出现水平段,土样始终处于饱和状态,生物炭掺量越大,试样的保水性越好。(4)由生物炭−黏土混合土微观孔隙结构以及生物炭在黏土中的分布形态来解释生物炭改性黏土的保水能力随生物炭掺量的变化关系。  相似文献   

12.
利用微生物诱导碳酸钙沉积(MICP)技术固化南海某岛礁的陆域吹填珊瑚砂,对珊瑚砂微生物固化体进行了三轴压缩试验,基于损伤力学理论建立了珊瑚砂微生物固化体的损伤本构模型。结果表明,利用MICP技术固化珊瑚砂效果好,强度高;固化体的三轴压缩应力–应变曲线可分为近似线弹性阶段、屈服阶段与延性流动阶段。将固化体划分为匀质微元进行损伤演化分析,根据连续介质损伤力学的有效应力理论与应变等效假说,定义了损伤变量,假定固化体强度服从双参数的Weibull分布及Druker-Prager准则,建立了损伤本构模型。模型参数包括固化体力学参数和Weibull分布参数,由三轴试验和线性回归法确定,并用试验资料初步验证了模型的合理性。  相似文献   

13.
为了将海水作为原料利用于微生物诱导碳酸钙(MICP)加固岛礁地基,进行了海水浓缩试验以及将浓缩海水作为钙源溶液的MICP砂土加固试验,研究细菌固定方式、细菌注入批次、胶结液中尿素浓度以及胶结液注入流速对加固效果的影响。研究表明,在不析出钙离子的条件下,将海水进行浓缩的最高倍数为3倍,此时钙离子含量约为0.033mol/L;尿素添加量宜为浓缩海水中钙离子含量的3倍,可有效利用胶结液中钙离子产生沉淀;使用2 mL/min的胶结液注入流速对5 cm砂柱进行加固可以得到最佳加固效果;加固后砂柱无侧限抗压强度达653 kPa,耗时4.5 d;增加细菌注入批次无法对砂柱加固效果进行有效改善。  相似文献   

14.
微生物矿化是近年来在土体改良工程发展起来的一个新分支,主要研究微生物活性在改善土体颗粒特性方面的应用。微生物诱导碳酸盐沉积(MICP)是实现土体生物胶结最常用的方法之一,该技术借助脲酶菌的代谢行为诱导碳酸钙,将松散的砂颗粒胶结成整体,从而提高了土体的力学性能。文章系统性地介绍了MICP研究中的脲酶菌矿化机理、相关处理方法、影响因素、衍生新工艺脲酶诱导碳酸盐沉积EICP及MICP技术在岩土领域的相关现场试验,并对MICP的实用性进行了总结,最后简要讨论了现研究阶段MICP工程应用所面临的挑战和潜在解决方案。  相似文献   

15.
刘璐  沈扬  刘汉龙  楚剑 《岩土力学》2016,37(12):3410-3416
为防治漫顶引起侵蚀造成堤坝破坏,将微生物诱导碳酸钙沉淀即MICP技术应用于加固堤坝表层。通过向堤坝表层喷洒微生物细胞以及营养盐,最终在砂土孔隙中快速析出碳酸钙胶凝结晶,以改善堤坝表层砂的力学性能。首先,采用喷洒法处理堤坝表层;其次,对处理好的堤坝模型进行水槽试验,研究其抗侵蚀性;最后,对堤坝表层的试样进行强度与渗透试验。试验结果表明,采用MICP技术加固堤坝模型表层可有效提高其抗侵蚀力,防治由漫顶引起的堤坝破坏。对加固后的表层取样进行测试,结果表明:无侧限抗压强度可高达9 MPa,渗透系数从4×10?4 m/s 降低至7.2×10?7 m/s。试验说明,微生物胶结技术在加固堤坝表层方面具有潜在的工程实用价值和广阔的应用前景。  相似文献   

16.
微生物沉积碳酸钙固化珊瑚砂的试验研究   总被引:1,自引:0,他引:1  
方祥位  申春妮  楚剑  吴仕帆  李依珊 《岩土力学》2015,36(10):2773-2779
向珊瑚砂中注入巴斯德芽孢杆菌菌液、氯化钙和尿素的混合液,利用微生物沉积碳酸钙固化珊瑚砂;并对珊瑚砂固化体进行了渗透、强度及微观结构等试验。试验结果表明,巴斯德芽孢杆菌的活性随时间呈衰减趋势,但衰减速度缓慢,能较好地满足珊瑚砂固化的需要。随着菌液、氯化钙和尿素的混合液注入次数的增加,珊瑚砂柱渗透性逐步降低,最终渗透性降低了1~2个数量级。微生物固化后的珊瑚砂柱应力-应变曲线大致可分为3段,即应力随应变缓慢增加段、快速增加段以及突降段。试样发生压裂脆性破坏,无侧限抗压强度最高达到14 MPa左右。抗压强度随干密度增加而增大,随渗透性降低而增大。微生物固化后珊瑚砂颗粒被生成的碳酸钙完整的包裹,孔隙间极少见生成的碳酸钙,与普通硅砂微生物固化后的微观结构不同,较好地解释了渗透性降低不多的原因。  相似文献   

17.
软基处理中的扁铲侧胀试验研究   总被引:3,自引:2,他引:1  
向先超  汪稔  朱长歧 《岩土力学》2005,26(11):1849-1852
在厦门海沧大道软基加固过程中,运用扁铲侧胀试验来获取软土力学指标,并与其他常用原位试验方法进行了比较,结果表明扁铲试验(DMT)具有操作简单、对土体扰动小、测试参数多、准确快捷等特点。通过对两种不同处理方法加固后的软基进行扁铲试验,发现袋装砂井超载预压法明显提高了软土的力学性能,其加固效果随深度增加而减弱,而从较长时间来看,粉喷桩对该地区软土本身力学性质没有太大改变。  相似文献   

18.
松散破碎性地层孔壁失稳一直是困扰钻探工程界的难题之一,增强该类地层的胶结性,提高其力学性能是有效解决孔壁失稳的技术关键。本文将微生物诱导碳酸钙沉积(MICP)技术与CMC无固相钻井液相结合,构建微生物-CMC无固相钻井液体系。通过岩心浸泡实验、X射线衍射实验(XRD)以及扫描电镜分析两种微观分析手段对微生物-CMC无固相钻井液的固壁作用与机理进行了初探。结果表明:微生物-CMC无固相钻井液对松散破碎性地层具有较明显的加固作用,且作用时间越长,初始菌种浓度越高,钙源浓度越大,固壁效果越好。在固壁过程中,微生物随钻井液渗透进入试样内部,在松散颗粒之间诱导生成碳酸钙晶体,填充孔隙空间,将松散颗粒胶结成整体,并具有一定的力学强度,从而达到加固孔壁的目的。本研究结果为解决松散破碎性地层孔壁失稳提供了新的钻井液技术方案。  相似文献   

19.
含碳酸盐混合砂作为一种特殊的岩土材料主要分布于热带沿海地区,独特的成因和组构使得其具有不同于陆源砂的岩土工程特性。针对取自我国南海的珊瑚砂与取自长江流域石英砂按不同质量百分比配制而成的混合砂,开展不同围压下的三轴固结排水剪切试验,研究不同碳酸钙含量混合砂的剪切特性。结果表明:(1)混合砂峰值强度随有效围压和碳酸钙含量的增加呈近似线性增长;(2)围压及碳酸含量是影响混合砂剪胀特性的主要参数,随着碳酸盐含量的增加,胀缩转换点及其对应的轴向应变量增大;(3)随着碳酸盐含量的增加,混合砂的黏聚力呈线性增加趋势,峰值内摩擦角?f缓慢增长;(4)混合砂的相对破碎率Br随碳酸钙含量及围压的增加而增加。  相似文献   

20.
微生物沉积碳酸钙固化砂质黏性紫色土试验研究   总被引:1,自引:0,他引:1  
沈泰宇  汪时机  薛乐  李贤  何丙辉 《岩土力学》2019,40(8):3115-3124
重庆紫色土是一种砂质黏性土,地区降雨集中,水力冲蚀作用剧烈,极易产生水土流失,微生物诱导方解石沉积(MICP)技术因能耗低、污染小而广泛应用于土体加固中。通过正交试验优化了巨大芽孢杆菌(BNCC 336739)的培养基和培养条件,活菌数增长126%,活性良好。采用巨大芽孢杆菌,进行低水压(9.8kPa)灌注固化砂质黏性紫色土试验,探究了固化效果的变化规律。结果表明:随固化次数增加,碳酸钙生成量和干密度逐级增加,无侧限抗压强度与碳酸钙生成量正相关;碳酸钙有效沉积越来越少,强度提高趋于稳定,固化9次后强度提高77%;随孔隙被碳酸钙填充和上下碳酸钙硬壳的形成,渗透性不断降低,最终下降两个数量级;通过试样上、中、下三部分碳酸钙生成量C的样本标准差s来反映碳酸钙分布离散程度,发现割线弹性模量在s的影响下随C增加而波动上升,波动表现为在C相近或s相差很大时,s越小割线弹性模量越大。研究成果可以为MICP技术在紫色土地区的地基、边坡加固和水土流失防护等工程应用提供科学依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号