首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于抗差EKF的GNSS/INS紧组合算法研究   总被引:2,自引:0,他引:2  
提出了GNSS/INS紧组合导航的抗差EKF算法,采用21状态GNSS/INS紧组合状态方程,根据多余观测分量及预测残差统计构造抗差等价增益矩阵,建立抗差EKF算法,通过迭代给出GNSS/INS组合导航的抗差解,并开发GNSS/INS紧组合导航模拟平台,通过对观测值加入单粗差、多粗差及缓慢增长三类误差,测试本文算法对不同粗差的抑制能力。分析表明,抗差EKF可以将三类粗差抑制在相应观测值的残差中,达到削弱其对状态参数估计的影响。本文算例证明,抗差EKF算法可将导航解的误差精度从dm级提高为cm级甚至mm级,导航精度及可靠性得到明显提高。  相似文献   

2.
全球卫星导航系统(GNSS)与超宽带(UWB)等定位系统在室内外复杂环境下作用范围有限,并且单一定位源均无法获得从室外到室内连续可靠的定位结果等问题,针对北斗卫星导航系统(BDS)+GPS/UWB松组合定位方法展开研究,设计了室内外动态定位实验与过渡区域静态定位实验,利用扩展卡尔曼滤波器(EKF)对定位误差状态进行最优估计,并对BDS+GPS组合、UWB以及BDS+GPS/UWB松组合三种定位模式进行分析评价. 实验结果表明:在室内外的过渡区域,BDS+GPS/UWB松组合改善了GNSS-实时动态定位(RTK)的定位精度,扩展了GNSS-RTK的作用范围;BDS+GPS/UWB松组合相比于各单一定位源在一定程度上提高了系统从室外到室内定位的连续性与定位结果的可用性.   相似文献   

3.
北斗/全球导航卫星系统(global navigation satellite system,GNSS)在开阔环境下可以提供连续可靠的高精度导航定位服务,但是在城市复杂场景下,GNSS多路径与非视距信号严重、粗差与周跳发生频繁,导航定位能力仍然存在不足。相较于扩展卡尔曼滤波(extended Kalman filter, EKF)方法,因子图优化能够充分利用历史观测,通过窗口内历元间约束与冗余观测信息共同抑制异常数据影响。构建了基于滑动窗口因子图优化的GNSS定位模型,通过验后残差迭代分析进行粗差探测,并从最小可探测误差、粗差探测成功率、定位精度提升等方面深入分析因子图优化与EKF的抗差性能。以城市复杂场景数据进行处理验证,结果表明,因子图优化的最小可探测误差减小了11.92%~32.56%,粗差探测成功率提升了3.84%~10.47%,GNSS定位精度提升了11.29%~25.99%。总体而言,对于城市复杂场景下的GNSS导航定位应用,因子图优化具备更好的抗差性能和定位精度,有望取代现有基于单历元观测值的EKF模型。  相似文献   

4.
在复杂观测环境下,GNSS/INS组合导航系统的GNSS信号易受干扰从而导致INS独立导航精度迅速下降。针对上述问题,本文基于因子图的里程计辅助GNSS/INS组合导航算法,利用里程计观测信息结合非完整性约束构建航向速度约束方程,同时采用能多次线性化计算和多次迭代的因子图优化方法进行参数估计。实际车载试验解算结果表明,在GNSS信号良好时,基于因子图方法比滤波方法具有更快的收敛时间,收敛速度提高了近10倍;在GNSS信号发生中断时,添加里程计辅助后组合导航系统在东向和北向分别提升了83%和89%。与传统的滤波融合手段相比,本文采用因子图优化后在东向和北向的定位精度分别有63%、70%的改善。  相似文献   

5.
针对纯视觉SLAM在光照变化明显、环境纹理较少及载体快速运动的室内场景中容易出现特征跟踪失败、定位精度下降等问题,本文提出了一种基于滑动窗口进行后端优化的视觉惯导紧耦合方法,融合了IMU信息以提高跟踪精度与系统的鲁棒性。该方法利用IMU预积分误差与单目视觉SLAM的重投影误差构建新的损失函数来进行状态估计,采用基于滑动窗口的非线性优化方法进行运动估计,实时恢复组合系统位姿。在实测数据集上的实验结果表明,本文方法在x轴方向上的均方根误差为0.124 m,y轴方向上的均方根误差为0.113 m,实现了厘米级精度的定位。  相似文献   

6.
刘琦  高成发  尚睿 《测绘工程》2021,30(3):26-31,40
针对目前常用的超宽带算法,扩展卡尔曼滤波(EKF)在解算过程中产生的线性化误差,对定位结果产生影响,而无损卡尔曼滤波(UKF)算法可以不进行线性化过程进行解算,避免误差的产生。文中首先对UWB定位系统线性化误差进行分析,在此基础上提出UKF和TDOA相结合的定位模型,通过实验比较两种算法的定位精度。实验结果表明UKF算法定位结果相比于EKF算法在U方向上有明显提升,误差稳定在10 cm之内。同时,通过改变初始坐标偏差,来进一步比较两种算法的定位效果,结果表明,初始偏差设置为0.5 m时,UKF算法比EKF算法U方向精度提升15%;初始偏差设置为1 m时,UKF算法U方向精度提升60%以上;初始偏差设置为5 m和10 m时,UKF算法U方向精度提升可以达到90%。EKF算法会产生不可忽略的线性化误差且误差会随着初始偏差增大而增大,UKF算法则可以保持较好的定位精度和稳定性。  相似文献   

7.
针对车载GNSS/惯性导航系统(inertial navigation system,INS)组合导航系统在GNSS信号失锁时定位精度下降甚至发散的问题,提出了一种长短期记忆(long short-term memory,LSTM)神经网络辅助组合导航的算法来提高定位精度,实现可靠连续稳定的定位.通过移动集成平台进行实验,结果表明:当GNSS信号失锁30 s时,LSTM辅助组合导航系统在东(east,E)、北(north,N)方向的位置误差最大值分别降低了77.45%、17.39%,均方根误差(root mean square error,RMSE)分别降低了79.53%、42.36%;当GNSS信号失锁100 s时,LSTM辅助GNSS/INS在E、N、天顶(up,U)三个方向上的位置误差最大值分别降低了60.07%、98.30%、84.65%,RMSE分别降低了61.96%、97.98%、84.65%. LSTM辅助较大地提升了车载GNSS/INS组合导航系统的导航性能.  相似文献   

8.
高精度定位与导航服务在移动机器人、无人机与自动驾驶等新兴领域中发挥着至关重要的作用。视觉/惯性/激光雷达组合算法相较于视觉/惯性组合算法,可同时利用环境的空间结构与纹理信息以实现更为鲁棒的位姿估计结果,然而其在大尺度场景下仍存在误差累计问题。为此提出了一种全球导航卫星系统(global navigation satellite system,GNSS)精密单点定位(precise point positioning,PPP)/视觉/惯性/激光雷达紧组合算法。该算法首先通过4种传感器的联合初始化,实现了不同传感器空间基准的统一;然后,用双频无电离层组合后的GNSS伪距、相位观测值与视觉、惯性、激光雷达原始观测值共同构成误差因子;最后,通过基于关键帧与滑动窗口的因子图优化实现了全局位姿的精确、鲁棒估计。经车载实验验证,所提出的GNSS PPP/视觉/惯性/激光雷达紧组合算法通过4种传感器在原始观测值层面的组合,可以显著提升系统在复杂环境下的位姿估计的精度、连续性与可靠性,实现无缝导航。  相似文献   

9.
李昕  孟硕林  黄观文  张勤  李晗旭 《测绘学报》2023,(10):1640-1649
GNSS/SINS组合导航中因姿态失准角等误差较大会引起状态误差坐标定义不一致和线性化误差较大问题,导致传统滤波和定位性能有所降低,尤其在面临较复杂的GNSS观测环境时更为显著。本文通过将姿态、速度及位置状态构造为特殊SE2(3)-EKF群元素,考虑陀螺及加速度计零偏误差,形成群-矢量混合误差模型,在此基础上设计了一种基于量测左不变的GNSS/SINS抗差滤波方法(RLIEKF),通过市区环境下存在大失准角误差和GNSS异常的车载组合导航试验,验证本文方法的优越性。试验结果表明:相对于传统EKF方法,RLIEKF方法由于在时间更新及GNSS量测更新中顾及了姿态角误差,在不同大失准角情况下仍具有较快的收敛速度,无须复杂且长时间的姿态对准步骤,较好地弥补了GNSS信号短时间缺失无法定位问题,可显著提升滤波新息精度,具备更好的抗差性能,对于复杂观测环境表现更为稳健,且计算效率相当,具备较好的工程实用价值。  相似文献   

10.
伪距多路径误差是影响GNSS导航定位精度的主要误差源之一。多路径误差与接收机周围环境有关,在实际应用中难以建立有效的多路径误差模型进行改正。对于多频GNSS接收机可以通过多频观测值组合估计伪距多路径,但该方法不适用于价格低廉的单频接收机,而导航中使用的大多数为单频接收机。因此,开展单频GNSS伪距多路径误差提取研究具有重要的工程应用价值。本文基于小波分析对单频GNSS接收机伪距多路径误差估计开展研究,首先验证了小波分析用于单频GNSS伪距多路径误差估计的可行性;其次,研究了采用不同的小波基和分解层次对多路径误差估计的影响;最后,研究了改正多路径误差对GNSS定位的影响。实验结果表明不同的小波基和分解层次对多路径误差提取效果没有明显的差别,但小波分解层次较低时定位误差分布相对更加集中,同时,经过多路径误差改正后在NEU3个方向RMS平均改善率达到20.4%、25.1%、16.4%。  相似文献   

11.
GNSS/SINS(global navigation satellite system/strapdown inertial navigation system)组合导航系统已得到广泛的应用与研究,当处于复杂环境时,GNSS输出容易出现误差均方差突变、误差均方差缓变、硬故障和软故障4种现象,进而影响组合导航系统滤波精度及载体的导航安全。为了解决上述问题,提出了一种改进的GNSS/SINS组合导航系统自适应滤波算法。首先,利用滤波过程中的观测异常检验统计量与滤波器门限值构建观测因子,然后,将变分贝叶斯原理与抗野值滤波方法结合,设计了改进的组合导航系统自适应滤波算法。仿真实验表明,相较于传统算法,当GNSS输出误差均方差发生变化时,所提算法可将位置精度及速度精度提高11.8%及13.7%;在GNSS输出发生硬故障时,所提算法可将位置精度及速度精度提高70.8%及69.6%。实验结果表明,所提算法具有较强的自适应性,可提升复杂环境下组合导航系统的精度和连续可用性。  相似文献   

12.
针对机器人利用单一位姿估计方法累积误差大、精度低的问题,本文提出了一种基于扩展卡尔曼滤波算法(EKF)和基于点线的最近点迭代扫描匹配算法(PL-ICP)的机器人位姿自适应估计方法。为了减少轮式里程计造成的累积误差,利用Mahony算法对陀螺仪和加速度计进行姿态解算,进而基于扩展卡尔曼滤波融合轮式里程计初步估计机器人位姿;为了减少轮子变形、打滑等对机器人位姿的影响,利用PL-ICP点云匹配算法构建单线激光里程计,对机器人位姿再次进行估计;为了提高位姿估计的准确度,提出了一种基于两种位姿总均方差和前后时刻位姿误差构建累积误差的自适应修正算法,通过分析两种位姿总均方差及前后时刻位姿误差,得到全局最优权重因子和局部动态权重因子,实现累积误差修正因子的自适应调整,得到机器人更精确的位姿估计。试验结果表明,该方法可对机器人的位姿累积误差进行修正,显著提高机器人的位姿估计精度。  相似文献   

13.
Kalman滤波时间尺度算法是一种实时的原子钟状态估计方法,在守时实验室具有重要实用价值。由于原子钟状态模型误差估计存在偏差,Kalman滤波时间尺度算法中状态估计可能出现相应异常扰动,应当对状态模型误差进行实时控制。对此,引入基于渐消因子的改进Kalman滤波时间尺度算法。对状态预测协方差矩阵引入渐消因子,利用统计量实时计算渐消因子的量值,控制状态预测协方差阵的增长,降低了原子钟状态估计的扰动。实验结果表明,相比于标准Kalman滤波时间尺度算法和基于预测残差构造自适应因子的Kalman滤波算法,基于渐消因子的改进Kalman滤波时间尺度算法能够提高原子钟状态估计的准确度,改进时间尺度的稳定度。  相似文献   

14.
车载低成本嵌入式组合导航系统的可靠性容易受到多种传感器故障和环境的影响,基于全球卫星导航系统(GNSS)状态的惯性导航系统(INS)/GNSS/里程计(ODO)抗差组合导航算法,提出了一种两级故障检测处理方法. 其中,第一级检测使用了基于解析冗余的残差卡方检验法,第二级检测使用了改进的双状态传播卡方检验算法. 利用自主研制的GN310低成本嵌入式系统采集路测数据. 结果表明:相对于传统算法,水平定位精度提升了39.7%;另外在半实物仿真下,水平定位误差保持在3 m以内,表明该容错方法能够有效地处理ODO、INS故障和GNSS软硬故障.   相似文献   

15.
针对滤波和优化融合算法在不同场景下定位性能不明确的问题,该文构建了一种融合先验点云地图、激光雷达(LiDAR)、惯性测量单元(IMU)的位姿估计框架。对比分析了基于图优化和误差状态卡尔曼滤波(ESKF)两种算法的位姿估计精度,并采用3组KITTI数据进行实验分析。结果表明:图优化算法的绝对位姿误差的均方根小于ESKF算法,3组数据的精度分别提升了28.9%、12.5%和21%;在复杂场景下,基于图优化算法的性能高于滤波算法;在简单场景下,滤波和图优化算法的精度接近,而滤波算法更加稳定。  相似文献   

16.
设计一种组合GPS/速率陀螺定姿系统。系统以方向余弦矩阵表示姿态,建立GPS/速率陀螺组合状态模型和观测模型。结合kalman滤波算法,提出一种状态矩阵卡尔曼滤波(StateMatrixKalmanKilter,SMKF)姿态估计算法,并采用拉格朗日算法对姿态矩阵进行正交化约束。与传统的基于四元数的扩展卡尔曼滤波(EKF)算法相比,基于方向余弦矩阵的姿态系统状态方程与测量方程均为线性方程,无需线性化处理,对初始姿态误差更具有较好的鲁棒性。数值仿真表明,该方法具有精度高和稳定性强等优点。  相似文献   

17.
讨论了全球导航卫星系统(global navigation satellite system,GNSS)/里程计(odometer,ODO)/惯性导航系统(inertial navigation system,INS)组合定位定姿中误差校正与ODO/INS组合导航两个方面的问题。针对里程计刻度因子和安装误差角的校正,在不改变原GNSS/INS滤波器的基础上,设计了GNSS/INS与INS/ODO两级卡尔曼滤波器级联结构,将INS导航误差与里程计刻度因子误差、安装误差角分别列入两个滤波器的系统状态中,在GNSS连续观测和固定模糊度条件下,利用里程计和惯导里程增量之差作为INS/ODO卡尔曼滤波器的外部观测,对误差进行校正。另一方面,使用校正过的里程计和安装误差角,在GNSS失锁条件下对INS进行观测和修正。跑车实验结果表明,本文算法可以有效校正里程计刻度因子和定位定姿(positioning and orientaton system,POS)安装误差角,同时大幅提高GNSS失锁条件下的定位精度,配合平滑卡尔曼滤波器,可将城市移动测量两分钟GNSS失锁条件下的定位误差控制在0.5m以内。  相似文献   

18.
因子图作为一种表示因式分解的建模工具,在编码领域、统计学、信号处理和人工智能领域有着广泛的应用.因子图在导航领域的应用研究逐步发展起来.与单一导航系统对比,组合导航系统能够提供更精确、更具鲁棒性的导航结果,但是因其各个子系统的误差特性与工作频率不同的特点,增加了导航系统的设计复杂性.基于因子图的组合导航算法可以有效解决导航信息融合中的传感器异步问题且实现对多传感器的灵活配置,使得系统具有即插即用的特性,在非线性量测条件下可以获得较好效果.导航系统中的状态估计以及信息融合问题可以使用因子图模型表示,基于因子图的和 积算法是组合导航信息融合的主要算法.本文对因子图及其在导航系统中的应用进行了探讨,主要包括:1)因子图的数学理论基础及其相关应用领域;2)因子图在定位与导航领域的发展和应用.   相似文献   

19.
基于UKF的GPS非线性动态滤波算法   总被引:4,自引:0,他引:4  
介绍了一种Unscented卡尔曼滤波算法,它通过确定性采样获得一组采样点,可获得更多的观测假设,对系统状态统计特性的估计更加准确,同时该算法无需对系统方程进行线性化,避免了传统的EKF算法由于线性化引入的误差。本文将UKF算法用于GPS非线性动态滤波技术中,建立了仿真模型并定义了仿真条件,与EKF算法的仿真结果相比,在系统状态统计特性未知的情况下,UKF算法对系统状态的估计更准确,定位精度更高。  相似文献   

20.
本文利用智能手机GNSS信噪比观测值在建筑物周围的变化特征,分析其与建筑物对GNSS信号遮挡的关系,提出了一种二维概率地图的概率消减反演算法和建筑高度的邻近边界点体素化反演算法,进而采用大量观测数据反演三维地图,并对反演精度进行分析。试验结果表明,在5m栅格地图上,取高度角为5°以上卫星的GNSS信噪比数据,达9000历元时各项精度趋于稳定,超过12000历元时反演的建筑物中心坐标、建筑面积、角点点位及建筑高度综合效果最佳。其中心点位误差为1.16~1.74m,面积误差为1.12%~2.39%,角点误差绝对均值为5.00~5.30m,均方根误差为5.82~6m,建筑高度误差为0.04~2.1m,基本实现了利用智能移动终端GNSS信噪比数据反演三维地图的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号