首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The role of the Setúbal–Lisbon canyon in accumulation and transport of labile organic matter from the coastal sea and ocean surface water towards the deep sea was assessed by investigating the distribution of organic matter of different quality in sedimentary aggregates and surface sediments of the canyon and adjacent slopes. Total hydrolysable amino acids (THAA) and organic carbon (Corg) were measured from aggregates, and contents of Corg, chlorophyll a (chl a), phaeopigments (phaeo), chloroplastic pigment equivalents (CPE) from sediments. As indices of organic matter (OM) quality THAA:Corg, degradation index (DI), chl a:phaeo, chl a:Corg and C:N ratio were determined. Sediment profiles of chl a and the isotope 210 of lead (210Pb) were used as tracers in a transport model to estimate deposition rates and background levels of the tracers, and sediment mixing rates (Db). Whereas bulk Corg contents of canyon and slope sediments were practically similar at all depths, higher contents of THAA, chl a and CPE, as well as higher THAA:Corg, DI and chl a:Corg, in aggregates and sediments from the upper reaches of the canyon indicate that labile organic matter accumulates in the upper canyon. This is confirmed by higher chl a and 210Pb deposition and Db calculated from the model. Hence, the Setúbal–Lisbon canyon, specially the upper region, acts as a natural trap of organic matter that is transported to the region via lateral transport and vertical settling from primary productivity. Organic matter might be further transported in downward canyon direction via rebound processes. The chl a and 210Pb profiles reveal active sediment mixing by physical processes and/or animal reworking.  相似文献   

2.
《Marine Geology》2005,216(3):155-167
A total of 83 cores were collected in the Gulf of Lions continental margins and analysed for 210Pbxs (excess 210Pb) in order to understand sedimentation patterns. Apparent sedimentation rates (ASR) range from 0.65 cm year−1 in the vicinity of the Rhône River mouth to 0.01 cm year−1 in the deep basin. Except for the prodelta area, rates decrease with depth linearly with the water depth. On the slope, ASR do not differ between canyons and open slope, except for the western area where the rates are slightly higher in the Lacaze–Duthiers canyon compared to its adjacent, open slope. In the canyon and open slope areas, mass accumulation rates determined from 210Pbxs profiles (0.10 and 0.08 g cm−2 year−1, respectively) are in good agreement with particulate fluxes calculated from 5 years of near-bottom sediment trap data, even when the trap particle fluxes and the apparent accumulation rates are overestimated in response to resuspension and bioturbation effects.However, differences in sediment trap data, between west and east portion of the slope, are not observed in the sedimentation rates calculated with 210Pbxs. The outer shelf area may have an important role in trapping sediment but it is not sufficiently documented. Sediment surface mixed layer depths decrease with water depth, with a mean value for the whole margin of 8±6 cm.210Pbxs inventories in the sediment are systematically higher than the net 210Pb export flux estimated from the above water column. Over the margin, the ratio between accumulated 210Pb and available 210Pb is about 3, suggesting boundary scavenging effects and advective transport.  相似文献   

3.
4.
Arctic sea ice can incorporate sediment and associated chemical species during its formation in shallow shelf environments and can also intercept atmospherically transported material during transit. Release of this material in ice ablation areas (e.g. the Fram Strait) enhances fluxes of both sediments and associated species in such areas. We have used a suite of natural (7Be, 210Pb) and anthropogenic (137Cs, 239Pu, 240Pu) radionuclides in sea ice, sea-ice sediments (SIS), sediment trap material and bottom sediments from the Fram Strait to estimate transit times of sea ice from source to ablation areas, calculate radionuclide fluxes to the Fram Strait and investigate the role of sea-ice entrained sediments in sedimentation processes. Sea ice intercepts and transports the atmospherically supplied radionuclides 7Be and 210Pb, which are carried in the ice and are scavenged by any entrained SIS. All of the 7Be and most of the excess 210Pb measured in SIS collected in the Fram Strait are added to the ice during transit through the Arctic Ocean, and we use these radionuclides as chronometers to calculate ice transit times for individual ice floes. Transit times estimated from the 210Pb inventories in two ice cores are 1–3 years. Values estimated from the 7Be/210Pbexcess activity ratio of SIS are about 3–5 years. Finally, equilibrium values of the activity ratio of 210Pb to its granddaughter 210Po in the ice cores indicate transit times of at least 2 years. These transit times are consistent with back-trajectory analyses of the ice floes. The latter, as well as the clay-mineral assemblage of the SIS (low smectite and high illite content), suggest that the sampled sea-ice floes originated from the eastern Siberian Arctic shelf seas such as the eastern Laptev Sea and the East Siberian Sea. This result is in agreement with the relatively low activities of 239,240Pu and 137Cs and the 240Pu/239Pu atom ratios (∼0.18, equivalent to that in global fallout) in SIS, indicating that prior global atmospheric fallout, rather than nuclear fuel reprocessing facilities, forms the main source of these anthropogenic radionuclides reaching the western Fram Strait at the time of sampling (1999). Transport of radionuclides by sea ice through the Arctic Ocean, either associated with entrained SIS or dissolved in the ice, accounts for a significant flux in ablation areas such as the Fram Strait, up to several times larger than the current atmospheric flux in the area. Calculated fluxes derived from sea-ice melting compare well to fluxes obtained from sediment traps deployed in the Fram Strait and are consistent with inventories in bottom sediments. 240Pu/239Pu atomic ratios lower than 0.18 in bottom sediments from the Fram Strait provide evidence that plutonium from a source other than atmospheric fallout has reached the area. Most likely sources of this Pu include tropospheric fallout from atomic weapons testing of the former Soviet Union prior to 1963 and Pu released from nuclear reprocessing facilities, intercepted and transported by sea ice to the ablation areas. Future work is envisaged to more thoroughly understand the actual mechanisms by which radionuclides are incorporated in sea ice, focusing on the quantification of the efficiency of scavenging by SIS and the effect of melting and refreezing processes over the course of several years during transit.  相似文献   

5.
Activities of dissolved, particulate, and sedimentary 210Pb were measured in the shelf-slope region of the Chukchi Sea. Samples were collected as part of the Shelf–Basin Interactions (SBI) Phase II process study (6 May–15 June, 2002) along three shelf–basin transects identified as West Hanna Shoal, East Hanna Shoal, and Barrow Canyon. Distributions of 210Pb and suspended particulate matter indicate efficient removal of 210Pb over the shelf by particle scavenging. Low 210Pb activities measured throughout the halocline of the Canada Basin are attributed to shelf scavenging and subsequent advective transport into the interior basin. Additionally, 210Pb inventories were used to construct a water-column-sediment budget of 210Pb and determine regions of particle export and deposition on the continental shelf and slope. Sediment focusing calculated with this 210Pb budget was observed throughout the shelf-slope region, particularly in shallow (∼100 m) shelf waters at Barrow Canyon. Despite elevated concentrations of suspended particulate matter in Barrow Canyon, the 210Pb budget does not indicate that sediment transport occurred from the West and East Hanna Shoals into Barrow Canyon.  相似文献   

6.
This study investigated the organic carbon accumulation rates (OCARs) and sulfate reduction rates (SRRs) in slope and basin sediments of the Ulleung Basin, East/Japan Sea. These sediments have high organic contents at depths greater than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. The mean organic carbon to total nitrogen molar ratio was estimated to be 6.98 in the Ulleung Basin sediments, indicating that the organic matter is predominantly of marine origin. Strong organic carbon enrichment in the Ulleung Basin appears to result from high export production, and low dilution by inputs of terrestrial materials and calcium carbonate. Apparent sedimentation rates, calculated primarily from excess 210Pb distribution below the zone of sediment mixing, varied from 0.033 to 0.116 cm year−1, agreeing well with previous results for the basin. OCARs fluctuated strongly in the range of 2.06–12.5 g C m−2 year−1, these rates being four times higher at the slope sites than at the basin sites. Within the top 15 cm of the sediment, the integrated SRRs ranged from 0.72 to 1.89 mmol m−2 day−1, with rates approximately twice as high in the slope areas as in the basin areas. SRR values were consistently higher in areas of high sedimentation and of high organic carbon accumulation, correlating well with apparent sedimentation rates and OCARs. The sulfate reduction rates recorded in the basin and slope sediments of the Ulleung Basin are higher than those reported for other parts of the world, with the exception of the Peruvian and Chilean upwelling regions. This is consistent with the high organic carbon contents of surface sediments of the Ulleung Basin, suggesting enhanced organic matter fluxes.  相似文献   

7.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

8.
Two core sediment samples; one from inner part (ManI) and the other closer to the mouth (ManII); were collected from the intertidal regions of Manori, a tidally influenced creek near Mumbai, India. Both the cores were subjected to various geochemical analyses to determine parameters such as pH, sediment components, total organic carbon, total nitrogen, total phosphorus and selected metals viz., Fe, Mn, Cu, Pb, Co, Ni, Zn, Cr, Al, Ca and V. Analysis of 210Pb activity was employed to assess the sediment deposition trend of the area. The data was further processed using factor and cluster analyses. The results indicate that the sediments from site ManI, had finer sediment composition, higher porosity, organic matter and metal contents but exhibited an erratic decline in 210Pb activity downcore. Also ManI showed higher C:N ratio and enrichment factor values as compared to site ManII. The inner area (ManI) probably received a greater input of organic matter from the erosion of terrestrial matter as well as domestic and industrial discharge. Sediments from site ManII had typical marine organic matter composition (lower C:N ratio). The concentration of metals at this site was also low indicating the contents were getting diluted by freshwater and seawater mixing.  相似文献   

9.
The narrow shelf along the coast of central Vietnam is seasonally supplied by large amounts of sediment from the adjacent mountainous hinterland following monsoonal precipitation. This study examines the fate of these sediments, and their accumulation rates along two transects across the shelf, based on analyses of radionuclides (210Pb, 137Cs), sediment texture and structure, as well as carbonate content. The inner shelf is covered by sands, and probably serves as bypass zone for fine sediments transported offshore. Sediment characteristics suggest that the transport to the mid and outer shelf is related to flood events. Averaged over the last century, the 210Pb-based mud mass accumulation rates on the mid and outer shelf vary between 0.25 g cm −2 and 0.56 g cm −2 year −1 (corresponding to linear sediment accumulation rates of 0.20–0.47 cm year −1). Along with high excess 210Pb inventories, these high accumulation rates suggest a significant sediment depocentre on the mid shelf. The 210Pb-derived sediment accumulation rates were found to be several times higher than 14C-derived rates previously reported for the Holocene, at the same location on the outer shelf. This is probably due to the incompleteness of the Holocene record, and an overestimation of the modern rate. Another explanation would be increased erosion within the rivers’ drainage basins, due to 20th century deforestation. This hypothesis is supported by the difference between recent (less sand, more lithic grains in the sand fraction) and older sediments. In terms of modern sedimentation processes and rates, the central Vietnam shelf, although being a part of a narrow passive continental margin, is similar to active flood-dominated continental margins.  相似文献   

10.
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged  1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget.  相似文献   

11.
Fluxes of the heavy metals chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) delivered by rivers to the Gulf of Lion (NW Mediterranean Sea) were estimated over a three year study of the River Rhone and its smaller tributaries. Most of the particulate metal fluxes (80–90%) delivered by these rivers occurred within a very short period of time (less than 12%), a typical trend for the Mediterranean environment, where highly contrasting hydrological regimes were observed over the year. Temporal and spatial variations in the fluxes of these particulate metals were driven by the fluxes in both water discharge and suspended particulate matter load. On the shelf, these particulate metal fluxes, largely arising from the Rhone watershed, were two to ten times more important than those resulting from atmospheric deposition. Co, Cr and Ni in the rivers and on the shelf surface sediments were mainly natural and associated with the finest particles. Cd and Phosphorus appeared to be associated with the silt fraction and to be enriched in the prodelta areas. Pb, Zn and Cu were more closely associated with the organic matter content and also showed enrichment in the organic rich prodeltaic sediments. Anthropogenic influences diminished offshore, except for Pb and Zn which could be supplied from the atmosphere by man-made aerosols. Although most of the metals tended to be enriched in the prodelta areas, these did not constitute a permanent sink due to resuspension processes affecting these shallow depths. A resuspension experiment conducted on sediment cores from the Rhone prodelta demonstrated that metal deposited on the surface layer, especially those associated with the organic matter, may be resuspended; this should be taken into account for a complete understanding of the biogeochemical cycle of these metals.  相似文献   

12.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

13.
Information on grain-size distribution and total organic carbon (TOC) content of surface sediment and cores from the Bornholm Basin, together with dating of cores using the 210Pb method and shallow seismic chirp profiling, has been analysed to elucidate long-term accumulation patterns. The presence of non-depositional areas with lag sediments and low TOC content below the wave base indicates that inflows of dense bottom water originating in the North Sea and associated near-bottom currents have strong influence on the depositional patterns of bulk sediment and organic matter in this deep basin. The general fining in mean grain size towards the northeast corresponds to the direction of inflow currents and prevailing winds. Recent and previously found 210Pb-based mean accumulation rates vary greatly within the basin, between 129 and 1,144 g m−2 year−1. The accumulation rate may vary by a factor of three even between stations located only 3–4 km apart. Rates recorded close to a seismic profile are consistent with the variation in Holocene sediment thickness. This variation reflects a depositional system controlled by near-bottom inflow currents, consisting of a large-scale channel and a wedge-formed sediment package. The spatial variation in TOC content depends partly on water depth, presumably due to generally poorer degradation in the deepest part of the basin because of less frequent oxygen supply by inflow water. Moreover, there is a tendency of higher TOC contents in the southern part of the basin, which may be due to the input of sediments originating from the Oder River. Compared to values for the central, deep Baltic Sea, TOC contents show lower values of 4–6% and insignificant temporal variations. This may be due to the Bornholm Basin being located much closer to the source of the more oxic inflow water, resulting in more favourable degradation conditions.  相似文献   

14.
《Marine Chemistry》2001,73(2):125-152
We report here bioturbation and sediment accumulation rates determined from replicate sediment cores at four different sampling sites on the Palos Verdes shelf, Southern California, using bomb fallout and natural radionuclides (137Cs, 239,240Pu, 210Pb, 234Th, and 14C), along with supporting measurements of organic carbon (OC), porosity and granulometry. Present-day particle reworking, on time scales of several months, is restricted to the upper 3 cm, with rates ranging from 13 to 200 cm2/year, as deduced from 234Thxs profiles. There is little evidence that particle reworking reached depths significantly greater than 5 cm. Post-1963 (or post-1971) sediment accumulation rates ranged from 0.7 to 1.4 g/cm2/year (equivalent to 1.1–1.8 cm/year for surficial sediments), as calculated from Pu and Cs isotope profiles, with little change over time or distance from the outfall. Lateral transport of older sediment and multiple sediment sources on the Palos Verdes shelf is suggested from radiocarbon measurements on foraminifera and bulk sedimentary organic matter at two sampling sites, which showed variable, old and refractory sources of OC. Pre-1953 sediments accumulated at rates that were at least 0.4 g/cm2/year (≥0.3 cm/year), based on 210Pbxs dating. Given the abundance of sediment sources to the Palos Verdes shelf, the high sedimentation rates, and shallow particle mixed layers, contaminant-enriched layers should continue to move deeper into the sediments.  相似文献   

15.
Sediment cores were collected from the shelf, slope, and basin of the Bering, Chukchi, and Beaufort Seas during May–June (under ice cover) and July–August (largely ice-free) 2004. Measurements of chlorophyll a (chl a), total organic carbon (TOC), and C/N ratios were made in surface and some subsurface core increments. Surface sediment chl a decreased with increasing water depth. Significant positive correlations were found between chl a and TOC and chl a and C/N ratios in the basin (>2000 m), but there were significant negative correlations between chl a and C/N ratios on the shelf (⩽200 m). Chl a values generally declined in down-core profiles, but in some deeper slope and basin cores, measurable inventories of subsurface chl a were present at depth. In some cases, these subsurface chlorophyll inventories coincident with peak activities of the anthropogenic radionuclide 137Cs were detected, which had maximal deposition following the atmospheric nuclear weapons testing era in the 1960s. A sedimentation rate independently determined for one of these cores using 210Pb was consistent with the depths of subsurface 137Cs peaks in slope sediments reflecting steady, relatively undisturbed deposition over a several-decade period. The depth of penetration of 137Cs in some continental slope sediments, together with detectable chl a, suggests that chl a can be buried in some of these deeper-water sediments under cold conditions for decadal periods in the absence of deposit feeders. Because organic deposition from the water column is episodic at high latitudes and concentrated following the spring bloom, these buried sources of organic materials, whether on the shelf or in deeper basin sediments, may ultimately be important for benthic invertebrates that could utilize this food source during times of the year when primary production flux from the overlying water column is reduced.  相似文献   

16.
We compared the signals of several water column properties (upwelling intensity, sea level anomaly, temperature, nutrients, dissolved oxygen, chlorophyll-a, and surface sediments) of the continental shelf off Concepción (36°S) during the 1997-1998 El Niño with those of a normal year (2002-2003). We found that the primary hydrographic effect of El Niño 1997-1998 was a reduction in the input of nutrient-rich, oxygen-poor Equatorial Subsurface Water over the shelf. This affected the biology of the water column, as evidenced by the reduced phytoplankton biomass. Surface sediment properties (biogenic opal, organic carbon, bulk δ15N) observed during El Niño 1997-1998 reflected a reduced export production and the sediments failed to show the water column seasonality that occurs under normal conditions. In addition, weakened denitrification and/or upper water column fertilization could be inferred from the sedimentary δ15N. Although diminished, export production was preserved in the surface sediments, revealing less degraded organic matter in the upwelling period of the El Niño year than in the normal year. We suggest that the fresher organic material on the seafloor was probably associated with a severe reduction in the polychaete Parapronospio pinnata, which is considered to be the most important metazoan remineralizer of organic carbon at the sediment-water interface in the study area.  相似文献   

17.
Distribution of210Pb in sediments on the South Texas Continental Shelf is related to dynamics of the sedimentary transport processes. This radioisotope, whose concentration is time-dependent, defines three depocenters on the shelf. In addition, the variation of210Pb activity at the sediment/water interface delineates areas of terrigenous sedimentation from hemipelagic sedimentation.  相似文献   

18.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

19.
During three icebreaker cruises in the Arctic Ocean under different sea-ice conditions in 2002, undisturbed benthic surface sediments were collected and assayed for the presence of a short-lived (t1/2=53 d), particle-reactive cosmogenic radionuclide, 7Be, that is solely derived from atmospheric deposition. Under largely ice-covered conditions in May–June 2002, we did not detect this radionuclide in benthic surface sediments, despite significant inventories present in ice-rafted snow on the overlying sea ice (mean=86.8 Bq m−2±32.0 SD; n=9). During the July–August 2002 Shelf–Basin Interactions (SBI) cruise aboard the USCGC Healy and during a simultaneous cruise of the CCGS Sir Wilfrid Laurier on the Bering and Chukchi Shelf, which occupied the same general region following retreat and dissolution of Arctic ice cover, the 7Be present in this snow as well as surface deposition on to the sea ice-free water surface was detected in many benthic surface sediments, including some as deep as 945 m in Barrow Canyon. Inventories of 7Be in sediments were as high (60 Bq m−2) as the entire decay-corrected inventory present earlier in some snow samples collected on the sea-ice cover. Other deposition indicators such as the inventories of sediment chlorophyll, sediment oxygen respiration rates and 234Th-derived export fluxes also showed post-ice melt particle deposition and vertical transport, but in most cases the 7Be deposition was not tightly correlated with these other indicators, suggesting that 7Be sedimentation may not be controlled by the same processes. Our observations indicate that materials in sea ice, including contaminants, particulate organic, and mineral matter originating from atmospheric deposition or entrained in continental shelf sediments and rafted onto sea ice, can be rapidly transported to depth. The re-distribution of these materials as sea-ice drifts and eventually melts has the potential for impacting Arctic Ocean biogeochemical cycles and contaminant concentrations in areas of the Arctic remote from the original point of deposition.  相似文献   

20.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号