首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nature, diversity of deposit types and metallogenic relations of South China   总被引:5,自引:10,他引:5  
The South China Region is rich in mineral resources and has a wide diversity of deposit types. The region has undergone multiple tectonic and magmatic events and related metallogenic processes throughout the earth history. These tectonic and metallogenic processes were responsible for the formation of the diverse styles of base and precious metal deposits in South China making it one of the resource-rich regions in the world. During the Proterozoic, the South China Craton was characterised by rifting of continental margin before eruption of submarine volcanics and development of platform carbonate rocks, and the formation of VHMS, stratabound copper and MVT deposits. The Phanerozoic metallogeny of South China was related to opening and closing of the Tethyan Ocean involving multiple orogenies by subduction, back-arc rifting, arc–continent collision and post-collisional extension during the Indosinian (Triassic), Yanshanian (Jurassic to Cretaceous) and Himalayan (Tertiary) Orogenies. The Late Palaeozoic was a productive metallogenic period for South China resulting from break-up and rifting of Gondwana. Significant stratabound base and precious metal deposits were formed during the Devonian and Carboniferous (e.g., Fankou and Dabaoshan deposits). These Late Palaeozoic SEDEX-style deposits have been often overprinted by skarn systems associated with Yanshanian magmatism (e.g., Chengmenshan, Dongguashan and Qixiashan). A number of Late Palaeozoic to Early Mesozoic VHMS deposits also developed in the Sanjiang fold belt in the western part of South China (e.g., Laochang and Gacun).South China has significant sedimentary rock-hosted Carlin-like deposits, which occur in the Devonian- to Triassic-aged accretionary wedge or rift basins at the margin of the South China Craton. They are present in a region at the junction of Yunnan, Guizhou, and Guangxi Provinces called the ‘Southern Golden Triangle’, and are also present in NW Sichuan, Gansu and Shaanxi, in an area known as the ‘Northern Golden Triangle’ of China. These deposits are mostly epigenetic hydrothermal micron-disseminated gold deposits with associated As, Hg, Sb + Tl mineralisation similar to Carlin-type deposits in USA. The important deposits in the Southern Golden Triangle are Jinfeng (Lannigou), Zimudang, Getang, Yata and Banqi in Guizhou Province, and the Jinya and Gaolong deposits in Guangxi District. The most important deposits in the Northern Golden Triangle are the Dongbeizhai and Qiaoqiaoshang deposits.Many porphyry-related polymetallic copper–lead–zinc and gold skarn deposits occur in South China. These deposits are related to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) magmatism associated with collision of the South China and North China Cratons and westward subduction of the Palaeo-Pacific Plate. Most of these deposits are distributed along the Lower to Middle Yangtze River metallogenic belt. The most significant deposits are Tonglushan, Jilongshan, Fengshandong, Shitouzui and Jiguanzui. Au–(Ag–Mo)-rich porphyry-related Cu–Fe skarn deposits are also present (Chengmenshan and Wushan in Jiangxi Province and Xinqiao, Mashan-Tianmashan, Shizishan and Huangshilaoshan in Anhui Province). The South China fold belt extending from Fujian to Zhejiang Provinces is characterised by well-developed Yanshanian intrusive to subvolcanic rocks associated with porphyry to epithermal type mineralisation and mesothermal vein deposits. The largest porphyry copper deposit in China, Dexing, occurs in Jiangxi Province and is hosted by Yanshanian granodiorite. The high-sulphidation epithermal system occurs at the Zijinshan district in Fujian Province and epithermal to mesothermal vein-type deposits are also found in the Zhejiang Province (e.g., Zhilingtou). Part of Shandong Province is located at the northern margin of the South China Craton and the province has unique world class granite-hosted orogenic gold deposits. Occurrences of Pt–Pd–Ni–Cu–Co are found in Permian-aged Emeishan continental flood basalt (ECFB) in South China (Jinbaoshan and Baimazhai in Yunnan Province and Yangliuping in Sichuan Province). South China also has major vein-type tungsten–tin–bismuth–beryllium–sulphide and REE deposits associated with Yanshanian magmatism (e.g., Shizhuyuan and Xihuashan), important world class stratabound base metal–tin deposits (Dachang deposit), and the large antimony deposits (Xikuangshan and Woxi). During the Himalayan Orogeny, many giant deposits were formed in South China including the recently emerging Yulong and Gangdese porphyry copper belts in Tibet and the Ailaoshan orogenic gold deposits in Yunnan.  相似文献   

2.
The Cenozoic metallogeny in Greece includes numerous major and minor hydrothermal mineral deposits, associated with the closure of the Western Tethyan Ocean and the collision with the Eurasian continental plate in the Aegean Sea, which started in the Cretaceous and is still ongoing. Mineral deposits formed in four main periods: Oligocene (33–25 Ma), early Miocene (22–19 Ma), middle to late Miocene (14–7 Ma), and Pliocene-Pleistocene (3–1.5 Ma). These metallogenic periods occurred in response to slab-rollback and migration of post-collisional calc-alkaline to shoshonitic magmatism in a back-arc extensional regime from the Rhodopes through the Cyclades, and to arc-related magmatism along the active south Aegean volcanic arc. Invasion of asthenospheric melts into the lower crust occurred due to slab retreat, and were responsible for partial melting of metasomatized lithosphere and lower crustal cumulates. These geodynamic events took place during the collapse of the Hellenic orogen along large detachment faults, which exhumed extensive metamorphic core complexes in mainly two regions, the Rhodopes and the Cyclades. The detachment faults and supra-detachment basins controlled magma emplacement, fluid circulation, and mineralization.The most significant mineralization styles comprise porphyry, epithermal, carbonate-replacement, reduced intrusion-related gold, intrusion-related Mo-W and polymetallic veins. Porphyry and epithermal deposits are commonly associated with extensive hydrothermal alteration halos, whereas in other cases alteration is of restricted development and mainly structurally controlled. Porphyry deposits include Cu-Au-, Cu-Mo-Au-Re, Mo-Re, and Mo-W variants. Epithermal deposits include mostly high- and intermediate-sulfidation (HS and IS) types hosted in volcanic rocks, although sedimentary and metamorphic rock hosted mineralized veins, breccias, and disseminations are also present. The main metal associations are Cu-Au-Ag-Te and Pb-Zn-Au-Ag-Te in HS and IS epithermal deposits, respectively. Major carbonate-replacement deposits in the Kassandra and Lavrion mining districts are rich in Au and Ag, and together with reduced intrusion-related gold systems played a critical role in ancient economies. Finally hundreds of polymetallic veins hosted by metamorphic rocks in the Rhodopes and Cyclades significantly add to the metal endowment of Greece.  相似文献   

3.
A.S. Yakubchuk   《Ore Geology Reviews》2009,35(3-4):447-454
The orogenic collages of the northern Circum-Pacific between Japan and Alaska revealed an endowment of about 450 Moz Au in various deposit types and diverse Mesozoic–Cenozoic tectonic settings. The area consists of predominantly late Paleozoic to Cenozoic turbidite to island arc terranes as well as Precambrian cratonic terranes that can be grouped into the Kolyma–Alaska, Kamchatka–Aleutian, and Nipponide collages. The latter can be linked via the Mongol–Okhotsk suture with the late Paleozoic to early Mesozoic terranes in the Mongolides.The early Yanshanian magmatic arc terranes in the fossil Kolyma–Alaska collage host copper–gold porphyry deposits, which have only recently received much attention. Exploration has revealed a large and growing gold endowment of more than 30 Moz Au in some individual deposits, with smaller role of epithermal deposits. This mineralization, formed at 140–125 Ma, is partly coeval with the collisions of magmatic arcs with the passive margin sequences of the Siberian craton and related granitoid magmatism. About 200 Moz of gold is known in the Kolyma–Alaska collage in the Mesozoic orogenic gold deposits and related Quaternary placers. The Central Kolyma, Indigirka, South Verkhoyansk, and North Chukotka subprovinces of the collage revealed an endowment of more than 10 Moz Au each. A similar and coeval event in the Mongolides in relation to the collision between Siberia and North China is largely reflected in still poorly dated intrusion-related gold deposits clustered along the Mongol–Okhotsk suture.The overlapping Yanshanian magmatic arcs in Transbaikalia and northeast China and the Okhotsk–Chukotka magmatic arc in the Russian Far East stitch the Kolyma–Alaska collage with the Paleozoic Central Asian supercollage and adjacent cratons. While the Okhotsk–Chukotka arc reveals a relatively simple and broad oroclinal pattern, the Yanshanian arcs in Mongolia, and NE China form a tightly deformed giant Z-shaped feature that was bent in response to the southward movement of the Siberian craton and northward translation of the Nipponides and North China craton to close the Mongol–Okhotsk suture in late Jurassic to Cretaceous times. The Yanshanian arcs host mostly small to medium-sized 100–70 Ma Au–Ag deposits, with the largest endowment discovered in the Baley district in Transbaikalia and at Kupol in the northern part of the Okhotsk–Chukotka arc. Some intrusion-related gold deposits were formed synchronously with this arc magmatism, with the largest known examples in the Tintina belt in Alaska formed at 104 and 93–91 Ma.The Kamchatka–Aleutian collage is still evolving in front of the westward-subducting Pacific plate. It's late Cretaceous to Paleogene magmatic arc rocks form immature island arc terranes, extending from the Aleutian islands towards the Nipponides via Kamchatka peninsula, Kuril islands and eastern Sakhalin. However, in the Nipponides, the Sikhote–Alin portion of the magmatic arc overlaps the Mesozoic turbidite terranes. The oroclinal pattern of this more than 8000 km-long magmatic arc indicates its westward translation in agreement with the movement of the Pacific plate so that the arc is presently colliding with itself along the island of Sakhalin, a seismically active intraplate lineament and a boundary between the Nipponide and Kamchatka–Aleutian collages. This magmatic arc is usually interpreted to be of intra-oceanic origin, with subsequent docking to Asia from the south; however, presence of the Sea of Okhotsk cratonic terrane between Sakhalin and Kamchatka suggests that it may be rather considered as an external arc system that separated from the rest of Asia due to backarc spreading events, therefore, forming the most external arc system at the active margin with the Pacific plate. The subduction-related events in the collage produced numerous late Mesozoic to Cenozoic 1–3 Moz gold epithermal deposit in Kamchatka and Sikhote–Alin as well as Au–Cu porphyry deposits, with currently largest gold endowment in the pre-Tertiary Pebble Copper deposit in Alaska. The westward translation of the Kamchatka–Aleutian collage might have controlled the emplacement of this porphyry deposit, as well as up to 30 Moz into intrusion-related gold deposits at 70–65 Ma in the Kuskokwim belt, immediately north from the porphyry cluster.  相似文献   

4.
Between the Late Jurassic and the Middle Miocene, widespread magmatism, tectonic events and hydrothermal mineralization characterized the geological evolution of the Atacama segment of the South American Andes. A characteristic feature of this zone is the coincidence in time and space between subduction-generated igneous activity, crustal deformation and mineralization in the magmatic arcs, which formed longitudinal belts migrating eastward.Mineralization in the last 140 Ma is generally restricted to four longitudinal metallogenic belts, in which hydrothermal activity was channelled along crustal-scale faults (1) the Atacama Fault System, along which Early Cretaceous Cu-Au-bearing breccia pipes, veins and stockwork were formed; (2) the Inca do Oro Belt, which contains Upper Cretaceous low sulphur precious metal epithermal mineralization, and Middle Eocene Cu-Mo-Au-bearing breccia pipes; (3) the West Fissure System, which hosts Upper Eocene to Early Oligocene porphyry copper deposits and high sulphur precious metal epithermal mineralization; and (4) the Maricunga Belt, when contains Upper Oligocene to Middle Miocene high sulphur precious metal epithermal deposits and Au-rich porphyry mineralization.  相似文献   

5.
The Tethyan Eurasian metallogenic belt (TEMB) was formed during Mesozoic and post-Mesozoic times in the area of the former Tethyan ocean on the southern margin of Eurasia, with the Afro-Arabian and Indian plates to the south. It extends from western Mediterranean via the Alps and southeastern Europe through the Lesser Caucasus, the Hindu Kush, and the Tibet Plateau to Burma and SW Indonesia, linking with the West Pacific metallogenic belt. The Carpatho-Balkan region is one of the sectors of the TEMB, characterized by some specific features. The emplacement of ore deposits is related to a definite time interval, and to specific tectonic settings such as: 1. Late Permian-Triassic intracontinental rifting along the northern margin of Gondwanaland and/or fragments already separated. This setting involves volcanogenic and volcano-sedimentary deposits (iron, lead/zinc, manganese, antimony, mercury, barite), skarn deposits associated with volcano-plutonic complexes of bimodal magmatism, and low temperature carbonate-hosted lead/zinc deposits. 2. Jurassic intraoceanic rifting – ophiolite complexes: This setting hosts major magmatic (particularly podiform chrome deposits) and volcano-sedimentary deposits, mainly of the Cyprus type. 3. Subduction-related setting involves porphyry copper deposits, lesser skarn deposits (iron, locally Pb-Zn), massive sulphide Cu (e.g. Bor) accompanied locally by Pb-Zn of replacement type, epithermal gold deposits, associated with calc-alkaline igneous complexes of the Early Tertiary-Late Cretaceous, and the Neogene gold/silver and base metals deposits. 4. Post-collision continent-continent setting includes deposits of Pb-Zn, Sb, As, Au-Cu associated with volcano-plutonic complexes of calc-alkaline affinity. Several major Alpine metallogenic units are developed in the Carpatho-Balkanides and adjacent area, each characterized by specific development, mineral associations, and types of ore deposits. Received: 3 June 1996 / Accepted: 10 January 1997  相似文献   

6.
The Tanlu Fault Zone (TFZ) is a large NE-trending fault system in eastern China that is the locus of several significant gold deposits. At different periods of its evolution and in different zones along its length, the TFZ has distinct geological features that control gold mineralization. In the northeastern part of the TFZ, early-stage faulting activity (from the Jurassic to Cretaceous) is associated with abundant calc-alkaline volcanic rocks, reflecting the compressive structural setting in the Jurassic and Cretaceous. However, activities in the late stage (Cenozoic) produced alkali basalts, indicating a mainly extensional tectonic regime. In the middle and southern segments of the TFZ, early-stage (Jurassic) activity was characterized by calc-alkalic granite intrusions, followed later (Cretaceous) by partial alkalic and alkalic volcanic-intrusive complexes, and in the latest stage (Cenozoic) by alkalic volcanic eruptions.

The TFZ system controls the distribution of gold metallogenic provinces in eastern China, and periods of mineralization of gold ore deposits coincide with the major stages of faulting. Gold ore deposits in eastern China are products of the evolution of the TFZ. During the early evolution of the TFZ, gold ore deposits related to calc-alkalic granite intrusions were formed—e.g., of the quartz-vein and altered-rock types. Gold deposits of the interlayer–sliding fault breccia type were formed along the margin of the extensional basin during the middle period of TFZ evolution. Finally, epithermal gold deposits related to alkalic magmatism were formed during the latest stage of TFZ evolution.  相似文献   

7.
Duobaoshan is the largest porphyry-related Cu-Mo-Au orefield in northeastern(NE)Asia,and hosts a number of large-medium porphyry Cu(PCDs),epithermal Au and Fe-Cu skarn deposits.Formation ages of these deposits,from the oldest(Ordovician)to youngest(Jurassic),have spanned across over 300 Ma.No similar orefields of such size and geological complexity are found in NE Asia,which reflects its metallogenic uniqueness in forming and preserving porphyry-related deposits.In this study,we explore the actual number and timing of magmatic/mineralization phases,their respective magma genesis,fertility,and regional tectonic connection,together with the preservation of PCDs.We present new data on the magmatic/mineralization ages(LA-ICP-MS zircon U-Pb,pyrite and molybdenite Re-Os dating),whole-rock geochemistry,and zircon trace element compositions on four representative deposits in the Duobaoshan orefield,i.e.,Duobaoshan PCD,Tongshan PCD,Sankuanggou Fe-Cu skarn,and Zhengguang epithermal Au deposits,and compiled published ones from these and other mineral occurrences in the orefield.In terms of geochronology,we have newly summarized seven magmatic phases in the orefield:(1)Middle-Late Cambrian(506-491 Ma),(2)Early and Middle Ordovician(485-471 Ma and~462 Ma),(3)Late Ordovician(450-447 Ma),(4)Early Carboniferous and Late-Carboniferous to Early Permian(351-345 and 323-291 Ma),(5)Middle-Late Triassic(244-223 Ma),(6)Early-Middle and Late Jurassic(178-168 Ma and~150 Ma),and(7)Early Cretaceous(~112 Ma).Three of these seven major magmatic phases were coeval with ore formation,including(1)Early Ordovician(485-473 Ma)porphyry-type Cu-Mo-(Au),(2)Early-Middle Triassic(246-229 Ma)porphyry-related epithermal Au-(Cu-Mo),and(3)Early Jurassic(177-173 Ma)Fe-Cu skarn mineralization.Some deposits in the orefield,notably Tongshan and Zhengguang,were likely formed by more than one mineralization events.In terms of geochemistry,ore-causative granitoids in the orefield exhibit adakite-like or adakite-normal arc transitional signatures,but those forming the porphyry-/epithermal-type Cu-Mo-Au mineralization are largely confined to the former.The varying but high Sr/Y,Sm/Yb and La/Yb ratios suggest that the ore-forming magmas were mainly crustal sourced and formed at different depths(clinopyroxene-/amphibole-/garnet-stability fields).The adakite-like suites may have formed by partial melting of the thickened lower crust at 35-40 km(for the Early Ordovician arc)and>40 km(for the Middle-Late Triassic arc)depths.The Early Jurassic Fe-Cu skarn orecausative granitoids show an adakitic-normal arc transitional geochemical affinity.These granitoids were likely formed by partial melting of the juvenile lower crust(35-40 km depth),and subsequently modified by assimilation and fractional crystallization(AFC)processes.In light of the geological,geochronological and geochemical information,we proposed the following tectonometallogenic model for the Duobaoshan orefield.The Ordovician Duobaoshan may have been in a continental arc setting during the subduction of the Paleo-Asian Ocean,and formed the porphyry-related deposits at Duobaoshan,Tongshan and Zhengguang.Subduction may have ceased in the latest Ordovician,and the regional tectonics passed into long subsidence and extension till the latest Carboniferous.This extensional tectonic regime and the Silurian terrestrial-shallow marine sedimentation had likely buried and preserved the Ordovician Duobaoshan magmatic-hydrothermal system.The south-dipping Mongol-Okhotsk Ocean subduction from north of the orefield had generated the Middle-Late Triassic continental arc magmatism and the associated Tongshan PCD and Zhengguang epithermal Au mineralization(which superimposed on the Ordovician PCD system).The Middle Jurassic closure of Mongol-Okhotsk Ocean in the northwestern Amuria block(Erguna terrane),and the accompanying Siberia-Amuria collision,may have placed the Paleo-Pacific subduction system in NE China(including the orefield)under compression,and formed the granodiorite-tonalite and Fe-Cu skarn deposits at Sankuanggou and Xiaoduobaoshan.From the Middle Jurassic,the consecutive accretion of Paleo-Pacific arc terranes(e.g.,Sikhote-Alin and Nadanhada)onto the NE Asian continental margin may have gradually distant the Duobaoshan orefield from the subduction front,and consequently arc-type magmatism and the related mineralization faded.The minor Late Jurassic and Cretaceous unmineralized magmatism in the orefield may have triggered mainly by the far-field extension led by the post-collisional(Siberia-Amuria)gravitational collapse and/or Paleo-Pacific backarc-basin opening.  相似文献   

8.
胶东-朝鲜半岛中生代金成矿作用   总被引:8,自引:2,他引:6  
范宏瑞  冯凯  李兴辉  胡芳芳  杨奎锋 《岩石学报》2016,32(10):3225-3238
华北克拉通东部与朝鲜半岛相接,是中朝克拉通的重要组成部分。在华北克拉通东部的胶东半岛和朝鲜半岛内皆产出有不同规模的金矿床,并具有显著的地域特色。胶东半岛已发现金矿床(点)近200处,其中三山岛、焦家、新城、玲珑等为世界级金矿,它们为石英脉型和受构造控制的蚀变岩型,成矿时间主要集中在~120Ma,说明金成矿作用是在相当短的时间内,在同一成矿背景下和同一构造-岩浆-流体成矿系统下完成的。成矿流体主要来自幔源岩浆以及幔源岩浆与地壳相互作用产生的地质流体,就位环境与地壳/岩石圈在早白垩世强烈伸展构造变形有关,为克拉通破坏型金矿;与我国辽东相邻的朝鲜半岛北部平安北道等地金矿储量较大,成矿类型与特征辽东五龙金矿类似,为石英脉型矿化,也可能为早白垩世与华北克拉通岩石圈减薄、破坏相关的金矿床;朝鲜半岛南部的韩国金(银)矿床分成侏罗纪中温热液型和白垩纪浅成低温热液型两类,其中侏罗纪热液脉状金矿成矿特征虽与胶东金矿类似,但成矿时代(峰期~160Ma)有显著差异。而白垩纪浅成低温热液型金-银矿化主要发生在100~70Ma,与太平洋板块俯冲作用相关,为典型的环太平洋斑岩-次火山活动有关的浅成低温贱金属成矿系列。胶东和朝鲜半岛金矿床类型、特征及成矿时间的异同,与区域中生代地质演化及地球动力学背景密切相关。  相似文献   

9.
Integrated studies and revisions of sedimentary basins and associated magmatism in Peru and Bolivia (8–22°S) show that this part of western Gondwana underwent rifting during the Late Permian–Middle Jurassic interval. Rifting started in central Peru in the Late Permian and propagated southwards into Bolivia until the Liassic/Dogger, along an axis that coincides with the present Eastern Cordillera. Southwest of this region, lithospheric thinning developed in the Early Jurassic and culminated in the Middle Jurassic, producing considerable subsidence in the Arequipa basin of southern Peru. This 110-Ma-long interval of lithospheric thinning ended 160 Ma with the onset of Malm–earliest Cretaceous partial rift inversion in the Eastern Cordillera area.The lithospheric heterogeneities inherited from these processes are likely to have largely influenced the distribution and features of younger compressional and/or transpressional deformations. In particular, the Altiplano plateau corresponds to a paleotectonic domain of “normal” lithospheric thickness that was bounded by two elongated areas underlain by thinned lithosphere. The high Eastern Cordillera of Peru and Bolivia results from Late Oligocene–Neogene intense inversion of the easternmost thinned area.  相似文献   

10.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

11.
The Altaids are an orogenic collage of Neoproterozoic–Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic–Early Paleozoic magmatic arcs (Kipchak, Tuva–Mongol, and Mugodzhar–Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper–molybdenum, lead–zinc, nickel and other deposits of various types.In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva–Mongol magmatic arcs were rifted off Eastern Europe–Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar–Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu–Pb–Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc–arc collision events in the Middle Cambrian and Late Ordovician.The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike–slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh–Mongol and Zharma-Saur–Valerianov–Beltau-Kurama arcs that welded the extinct Kipchak and Tuva–Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust of the Paleo-Pacific Ocean. Several world-class Cu–(Mo)-porphyry, Cu–Pb–Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb–Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust.After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian–Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni–Cu–PGE deposits of Norilsk in the northwest of the Siberian craton.In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol–Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike–slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70–400 km, possibly in response to spreading in the Canadian basin. India–Asia collision rejuvenated some of these faults and generated a system of impact rifts.  相似文献   

12.
Analysis of the spatial relations of gold ore occurrences and the enclosing geological environment in the Chukotka Autonomous Okrug (ChAO) has shown that Au–quartz ore occurrences in turbidites are located predominantly in areas of the Early Cretaceous granitoid magmatism with the thick collision-type continental crust. The Cu–Au porphyry deposits are located in areas with complete development of Early Cretaceous magmatism within the outer zone of the Okhotsk–Chukchi volcanoplutonic belt (OChVB). The Au–Ag epithermal deposits are located in the areas of the Late Cretaceous granitoid magmatism within the inner and outer zones of the OChVB. The prospects of island-arc complexes for searching for Kuroku-type Au-bearing ore objects are available.  相似文献   

13.
甲乌拉铅锌银矿床是大兴安岭西坡得尔布干铜(钼)-银铅锌成矿带内大型铅锌银矿床之一,长期以来被认为是一个与火山-次火山热液作用有关的浅成低温热液矿床.在野外调研的基础上,对含矿岩体石英二长斑岩开展年代学研究,结果表明:与成矿关系密切的石英二长斑岩的LA-ICP-MS锆石U-Pb年龄为152.2±1.5 Ma (MSWD=4.7,n=31).结合前人成岩、成矿年代学研究,认为甲乌拉矿床为晚侏罗世-早白垩世早期成矿,与区域上同类矿床产于同一时代,形成于蒙古-鄂霍次克洋闭合碰撞造山后的伸展构造背景.  相似文献   

14.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   

15.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

16.
The San Rafael Massif is characterized by widespread fluorite and manganese epithermal ore deposits whose origin has been under debate to the present. Isotopic (Sm/Nd and K/Ar) and geochemical (trace elements and REE) data of fluorite and manganese ore allowed to establish the age and genesis of the deposits and to propose a regional genetic model. The fluorite deposits were formed during the Upper Triassic–Lower Jurassic as a result of the Triassic rifting that launched a hydrothermal activity at regional scale. The hydrothermal fluids had low T and high fO2 with fluorine probably derived from a mantle source and REE scavenged from the volcanics of the Gondwanan Choiyoi Magmatic Cycle upper section. The manganese deposits were formed by oxidizing hydrothermal fluids that collected Mn from deep sources and also leached REE from the upper section of the Choiyoi Magmatic Cycle during two mineralization episodes. One episode was linked to the rift tectonic setting that remained active up to the Upper Cretaceous and the other was related to an Early Miocene back-arc extensional geodynamic setting. Both manganese and fluorite deposits were formed in extensional tectonic settings within an epithermal environment near the surface, and can be ascribed to the general model of detachment-related deposits.  相似文献   

17.
黑龙江省是我国著名金矿产区之一,发育多个浅成低温热液型金矿,它们与中生代陆相火山-次火山岩有密切的关系,但对这些陆相火山-次火山岩的成因缺乏系统研究,制约了本区金矿的成因认识和矿床勘查。本次研究采用先进的LA-ICP-MS锆石定年法、地球化学Sr-Nd-Pb同位素示踪等方法,对与乌拉嘎浅成低温热液金矿存在密切成因联系的次火山岩(花岗闪长斑岩)进行深入研究。LA-ICP-MS锆石定年法获得乌拉嘎矿区葡萄沟岩体及其南部含矿岩枝的成岩年龄分别为108.2±1.2Ma和106±1.1Ma,与区内宁远村组火山岩成岩时间基本相近,推断金矿成矿时代为早白垩世晚期,与东安金矿和高松山金矿为同期。岩石地球化学确定该岩体为高钾钙碱性(σ=1.83~2.18)偏铝质I型花岗岩特征,结合微量元素和Sr-Nd-Pb研究显示其具有活动陆缘弧岩浆岩特点,进一步得出岩浆源区和成矿物质具有来源于新元古代形成的镁铁质下地壳的部分熔融的属性。早白垩世时,中国东部处于伸展应力体制下,尤其黑龙江构造活动强烈,起源于新生下地壳重融的岩浆活动频繁,结合已有的浅成低温热液金矿床资料显示,推断区内具有巨大的成矿潜力。  相似文献   

18.
The most intense area of Mesozoic volcanism and main region of hydrothermal-type uranium deposits is located in Eastern China. From the northern to the southern part, it can be divided into seven volcanic belts of Great Xing’an Range, Lesser Xing’an-Zhangguangcai Ranges, Northern Hebei-Western Liaoning, the Lower Yangtze Region, Ganhang areas, Wuyi Mountain areas,the Southeast Coastal areas, five uranium metallogenic belts of Guyuan-Hongshanzi, Qinglong-Xingcheng, Luzong-Qixia, Ganhang, Wuyi Mountain, and Three uranium metallogenic perspective belts of Manzhouli-Erguna, Zhalantun, Yichun. The volcanism of all these volcanic belts can be subdivided into six stages: The Early Jurassic to early Middle Jurassic, late Middle Jurassic to early Late Jurassic, early Early Cretaceous, middle Early Cretaceous, late Early Cretaceous and early Late Cretaceous. High-K calc-alkaline rhyolite-alkali trachyte rock assemblage of the early Early Cretaceous has a close connection with the explored uranium deposits. High-K calc-alkaline rhyolites have high content of uranium, and can provide the epithermal ore forming system with uranium; Alkali trachyte associated with mantle-derived magmatism can provide alkaline ore-forming fluid of rich uranium for deep temperature mineralizing system or act as pioneers of alkaline ore-forming fluid of rich uranium.  相似文献   

19.
黑龙江多宝山-呼玛地区金矿分类及成矿地质背景研究   总被引:1,自引:0,他引:1  
黑龙江省西北部的多宝山-呼玛地区发育大小型金矿(点)16处,主要集中分布在北东向和北西向构造形成的菱环形构造带内.元古宇和下古生界地层单元为金成矿提供物质来源,古生代以来3阶段强烈岩浆热事件为金矿成矿提供了热源、流体和就位空间.根据金矿床赋矿岩石类型、成矿流体等特征和区域构造演化过程,将本地区金矿划分为3个类型:①与火山岩有关的浅成低温热液型金矿,赋矿围岩为早白垩世火山岩,成矿流体源于大气降水;②受压扭性构造控制的低温热液金矿,对围岩无选择,成矿流体具有变质流体和大气降水混合特征,低盐度,少CO2;③夕卡岩型、斑岩型伴生金矿床,具有成矿温度高、盐度高、流体包裹体富含CO2的特点.第一类与第二类为同期异相,形成环境为造山后陆内裂谷-伸展环境;第三类形成于与古太平洋板块的斜向俯冲作用和北部鄂霍次克洋闭合有关的挤压造山环境.  相似文献   

20.
The margin of NE China, a part of the West Pacific metallogenic belt, contains innumerable low-sulphidation mineral deposits. Gold deposits in this region can be classified into three distinct types based on geology and ore mineral paragenesis: (1) low-sulphidation epithermal silver–gold deposits, (2) low-sulphidation tellurium–gold deposits, and (3) low-sulphidation epithermal tellurium–gold deposits. Ores formed during the late Early Cretaceous and the early Late Cretaceous reflect three distinct metallogenic periods: the Fuxin Stage at 115.98 ± 0.89 Ma, the Quantou Stage at 107.2 ± 0.6 Ma or <103 Ma, and the Qingshankou or Yaojiajie Stage at < 97 Ma and 88.2 ± 1.4 Ma. The Fuxin Stage is dominated by trachyandesitic magmatism, with magmas emplaced at hypabyssal depths. In comparison, the Quantou Stage is characterized by high-K calc-alkaline, calc-alkaline, and sodic andesitic, dacitic, and rhyolitic magmatism of three different suites. The first of these is a high-K calc-alkaline andesitic magmatic suite that was accompanied by the emplacement of a calc-alkaline sodic dacite during the formation of the Ciweigou and Wufeng ore deposits. The second suite is dominated by calc-alkaline sodic rhyolite and high-K calc-alkaline sodic dacite magmatism associated with the formation of the Sipingshan ore deposit. The third suite is typified by high-K calc-alkaline andesitic magmatism associated with the emplacement of calc-alkaline hypabyssal granitoid complexes accompanying the formation of the Dong'an and Tuanjiegou ore deposits. The Qingshankou or Yaojia Stage is characterized by calc-alkaline sodic dacite magmatism associated with the formation of the Wuxing ore deposit. Metallogenesis during the Fuxin Stage characterized by trachytic magmatism is closely related to the formation of a deep-seated fault within a magmatic arc or the back-arc region of an immature continental margin and is associated with the Early Cretaceous subduction of the Pacific plate beneath Eurasia. Ore deposits that formed during the Fuxin Stage were generally related to magmato-hydrothermal fluids associated with mantle-derived magmas. In contrast, metallogenesis during the Quantou and Qingshankou or Yaojiajie stages was closely related to the formation of a mature high-K calc-alkaline magmatic arc within a continental margin setting again associated with the westward subduction of the Pacific plate. This metallogenic event was a product of magmato-hydrothermal systems derived from crust–mantle interaction and mixing of magmas derived from partial melting of different sections of the continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号