首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The correlation dimension, that is the dimension obtained by computing the correlation function of pairs of points of a trajectory in phase space, is a numerical technique introduced in the field of non-linear dynamics in order to compute the dimension of the manifold in which an orbit moves, without the need of knowing the actual equations of motion that give rise to the trajectory. This technique has been proposed in the past as a method to measure the dimension of stellar orbits in astronomical potentials, that is the number of isolating integrals of motion the orbits obey. Although the algorithm can in principle yield that number, some care has to be taken in order to obtain good results. We studied the relevant parameters of the technique, found their optimal values, and tested the validity of the method on a number of potentials previously studied in the literature, using the Smaller Alignment Index (SALI), Lyapunov exponents and spectral dynamics as gauges.  相似文献   

2.
We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than   M r=−18.0  associated with 2254 hosts brighter than   M r=−19.0  from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology–radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.  相似文献   

3.
4.
5.
An infinite family of axially symmetric thin discs of finite radius is presented. The family of discs is obtained by means of a method developed by Hunter and contains, as its first member, the Kalnajs disc. The surface densities of the discs present a maximum at the centre of the disc and then decrease smoothly to zero at the edge, in such a way that the mass distribution of the higher members of the family is more concentrated at the centre. The first member of the family has a circular velocity proportional to the radius, thus representing a uniformly rotating disc. On the other hand, the circular velocities of the other members of the family increase from a value of zero at the centre of the discs to a maximum and then decrease smoothly to a finite value at the edge of the discs, in such a way that, for the higher members of the family, the maximum value of the circular velocity is attained nearest the centre of the discs.  相似文献   

6.
We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample of spiral galaxies with measured axisymmetric background properties. We report here the results of the simulations for four galaxies: NGC 488, NGC 628, NGC 1566, and NGC 3938. Using the observed radial distributions for the stellar velocity dispersions and the rotation velocities we have constructed the equilibrium models for the galactic disks in each galaxy and implemented two kinds of stability analyses - the linear global analysis and 2D-nonlinear simulations. In general, the global modal approach is able to reproduce the observed properties of the spiral arms in the galactic disks. The growth of spirals in the galactic disks can be physically understood in terms of amplification by over-reflection at the corotation resonance. Our results support the global modal approach as a theoretical explanation of spiral structure in galaxies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We study the dynamics of a model for the late-type barred-spiral galaxy NGC 3359 by using both observational and numerical techniques. The results of our modelling are compared with photometric and kinematical data. The potential used is estimated directly from observations of the galaxy. It describes with a single potential function, a barred-spiral system with an extended spiral structure. Thus, the study of the dynamics in this potential has an interest by itself. We apply orbital theory and response models for the study of the stellar component, and smoothed particle hydrodynamics for modelling the gas. In particular, we examine the pattern speed of the system and the orbital character (chaotic or ordered) of the spiral arms. We conclude that the spiral pattern rotates slowly, in the sense that its corotation is close to or even beyond the end of the arms. Although a single, slow pattern speed could, under certain assumptions, characterize the whole disc, the comparison with the observational data indicates that probably the bar and the spirals have different angular velocities. In our two pattern speeds model, the best fit is obtained with a bar ending close to its 4:1 resonance and a more slowly rotating spiral. Assuming an 11 Mpc distance to the galaxy, a match of our models with the observed data indicates a pattern speed of about  39 km s−1 kpc−1  for the bar and about  15 km s−1 kpc−1  for the spiral. We do not find any indication for a chaotic character of the arms in this barred-spiral system. The flow in the region of the spirals can best be described as a regular 'precessing-ellipses flow'.  相似文献   

8.
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss–Hermite coefficients h 3 and h 4) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps.
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.  相似文献   

9.
10.
11.
12.
We examine the local stability of galactic discs against axisymmetric density perturbations with special attention to the different dynamics of the stellar and gaseous components. In particular, the discs of the Milky Way and of NGC 6946 are studied. The Milky Way is shown to be stable, whereas the inner parts of NGC 6946, a typical Sc galaxy from the Kennicutt sample, are dynamically unstable. The ensuing dynamical evolution of the composite disc is studied by numerical simulations. The evolution is so fierce that the stellar disc heats up dynamically on a short time-scale to such a high degree, which seems to contradict the morphological appearance of the galaxy. The star formation rate required to cool the disc dynamically is estimated. Even if the star formation rate in NGC 6946 is at present high enough to meet this requirement, it is argued that the discs of Sc galaxies cannot sustain such a high star formation rate for extended periods.  相似文献   

13.
The Milky Way is made up of a central bar, a disk with embedded spiral arms, and a dark matter halo. Observational and theoretical constraints for the characteristic parameters of these components will be presented, with emphasis on the constraints from the dynamics of the Milky Way gas. In particular, the fraction of dark matter inside the solar radius, the location of the main resonances, and the evidence for multiple pattern speeds will be discussed.Invited talk at the AAS Division on Dynamical Astronomy meeting, Santa Barbara, April 2005  相似文献   

14.
Hernquist’s (1990) mass model for spherical galaxies and bulges described by the deVaucouleur’s profile gives analytical expressions for the density profile and the potential. These have been used to derive a simple and exact analytical expression for the gravitational potential energy of a pair of interpene-trating spherical galaxies represented by this model. The results are compared with those for polytropic and Plummer models of galaxis.  相似文献   

15.
16.
Dynamical evolution of galactic disks driven by interaction with satellite galaxies, particularly the problem of the disk warping and thickening is studied numerically. One of the main purpose of the study is to resolve the long standing problem of the origin of the disk warping. A possible cause of the warp is interaction with a satellite galaxy. In the case of the Milky Way, the LMC has been considered as the candidate. Some linear analysis have already given a positive result, but one had to wait for a fully self-consistent simulation as a proof. I have accomplished the numerical simulations with a million particles, by introducing a hybrid algorithm, SCF-TREE. Those simulations give us quantitative estimates for the Milky Way system. We have found an example in which large warp amplitudes are developed. We also found that the warp amplitudes depend on the halo distribution. Among our three models, the most massive and spherical halo is preferable for the observable warp excitation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.  相似文献   

18.
When faced with the task of constraining a galaxy's potential given limited stellar kinematical information, what is the best way of treating the galaxy's unknown distribution function (DF)? Using the example of estimating black hole (BH) masses, I argue that the correct approach is to consider all possible DFs for each trial potential, marginalizing the DF using an infinitely divisible prior. Alternative approaches, such as the widely used maximum-penalized likelihood method, neglect the huge degeneracies inherent in the problem and simply identify a single, special DF for each trial potential.
Using simulated observations of toy galaxies with realistic amounts of noise, I find that this marginalization procedure yields significantly tighter constraints on BH masses than the conventional maximum-likelihood method, although it does pose a computational challenge which might be solved with the development of a suitable algorithm for massively parallel machines. I show that in practice the conventional maximum-likelihood method yields reliable BH masses with well-defined minima in their χ2 distributions, contrary to claims made by Valluri, Merritt & Emsellem.  相似文献   

19.
20.
彗星是太阳系中天文学的重要研究对象.它涉及到天体物理、化学、天体力学等多种领域。近年的研究表明,彗星可能是揭开太阳系起源和演化之谜的突破口,还可能与生命的起源有关.本文旨在对彗星动力学的发展情况作一简单的回顾和评述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号