首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for ocean acidification in the Great Barrier Reef of Australia   总被引:1,自引:0,他引:1  
Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ∼200 year δ11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ11B isotopic compositions reflect variations in seawater pH, and the δ13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ11B values. The internal precision and reproducibility for δ11B of our measurements are better than ±0.2‰ (2σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ11B compositions to loss of zooxanthellate symbionts. Importantly, from the 1940s to the present-day, there is a general overall trend of ocean acidification with pH decreasing by about 0.2-0.3 U, the range being dependent on the value assumed for the fractionation factor α(B3-B4) of the boric acid and borate species in seawater. Correlations of δ11B with δ13C during this interval indicate that the increasing trend towards ocean acidification over the past 60 years in this region is the result of enhanced dissolution of CO2 in surface waters from the rapidly increasing levels of atmospheric CO2, mainly from fossil fuel burning. This suggests that the increased levels of anthropogenic CO2 in atmosphere has already caused a significant trend towards acidification in the oceans during the past decades. Observations of surprisingly large decreases in pH across important carbonate producing regions, such as the Great Barrier Reef of Australia, raise serious concerns about the impact of Greenhouse gas emissions on coral calcification.  相似文献   

2.
3.
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of “soil” phytoliths ( at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pHIEP = 1.2 ± 0.1 and 2.5 ± 0.2 for “soil” (native) and “heated” (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-pK surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ? pH ? 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation:
  相似文献   

4.
Microorganisms and higher plants produce biogenic ligands, such as siderophores, to mobilize Fe that otherwise would be unavailable. In this paper, we study the stability of arsenopyrite (FeAsS), one of the most important natural sources of arsenic on Earth, in the presence of desferrioxamine (DFO-B), a common siderophore ligand, at pH 5. Arsenopyrite specimens from mines in Panasqueira, Portugal (100-149 μm) that contained incrustations of Pb, corresponding to elemental Pb as determined by scanning electron microscopy-electron diffraction spectroscopy (SEM-EDX), were used for this study. Batch dissolution experiments of arsenopyrite (1 g L−1) in the presence of 200 μM DFO-B at initial pH (pH0) 5 were conducted for 110 h. In the presence of DFO-B, release of Fe, As, and Pb showed positive trends with time; less dependency was observed for the release of Fe, As, and Pb in the presence of only water under similar experimental conditions. Detected concentrations of soluble Fe, As, and Pb in suspensions containing only water were found to be ca. 0.09 ± 0.004, 0.15 ± 0.003, and 0.01 ± 0.01 ppm, respectively. In contrast, concentrations of soluble Fe, As, and Pb in suspensions containing DFO-B were found to be 0.4 ± 0.006, 0.27 ± 0.009, and 0.14 ± 0.005 ppm, respectively. Notably, the effectiveness of DFO-B for releasing Pb was ca. 10 times higher than that for releasing Fe. These results cannot be accounted for by thermodynamic considerations, namely, by size-to-charge ratio considerations of metal complexation by DFO-B. As determined by SEM-EDX, elemental sample enrichment analysis supports the idea that the Fe-S subunit bond energy is limiting for Fe release. Likely, the mechanism(s) of dissolution for Pb incrustations is independent and occurs concurrently to that for Fe and As. Our results show that dissolution of arsenopyrite leads to precipitation of elemental sulfur, and is consistent with a non-enzymatic mineral dissolution pathway. Finally, speciation analyses for As indicate variability in the As(III)/As(V) ratio with time, regardless of the presence of DFO-B or water. At reaction times <30 h, As(V) concentrations were found to be 50-70%, regardless of the presence of DFO-B. These results are interpreted to indicate that transformations of As are not imposed by ligand-mediated mechanisms. Experiments were also conducted to study the dissolution behavior of galena (PbS) in the presence of 200 μM at pH0 5. Results show that, unlike arsenopyrite, the dissolution behavior of galena shows coupled increases in pH with decreases in metal solubility at t > 80 h. Oxidative dissolution mechanisms conveying sulfur oxidation bring about the production of {H+}. However, dissolution data trends for arsenopyrite and galena indicate {H+} consumption. It is plausible that the formation of Pb species is dependent on {H+} and {OH}, namely, stable surface hydroxyl complexes of the form (pH50 5.8) and for pH values 5.8 or above.  相似文献   

5.
Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in certain contaminated sediments at the US Department of Energy Hanford site [Liu, C., Zachara, J.M., Qafoku, O., McKinley, J.P., Heald, S.M., Wang, Z. 2004. Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta68, 4519-4537.]. Consequently, the solubility of synthetic Na-boltwoodite, Na(UO2)(SiO3OH) · 1.5H2O, was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site and calcareous environments generally. Experiments were open to air. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility and dissolution kinetics increased with increasing bicarbonate concentration and pH. A consistent set of solubility constants were determined from circumneutral pH (0 added bicarbonate) to alkaline pH (50 mM added bicarbonate). Average or 5.85 ± 0.0.26; using the Pitzer ion-interaction model or Davies equation, respectively. These values are close to the one determined by [Nguyen, S.N., Silva, R.J., Weed, H.C., Andrews, Jr., J.E., 1992. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite. J. Chem. Thermodynamics24, 359-376.] under very different conditions (pH 4.5, Ar atmosphere).  相似文献   

6.
The effect of pH on the kinetics of tremolite and anthophyllite dissolution was investigated at 25 °C in batch reactors over the pH range of 1–13.5, in inorganic buffered solutions. Dissolution rates were obtained based on the release of Si and Mg. Results obtained in this study show different behaviors for both minerals. For tremolite, dissolution rates show a noticeable dependence on pH between 1 and 8, decreasing as pH increases and reaching a minimum around neutral conditions. At basic pH this dependence becomes even stronger, but dissolution takes place together with collateral effects of saturation and carbonation. A preferential release of Ca and Mg is observed in acid media, lowering the Mg/Si ratio to the extent that Mg solubility decreases with pH. For anthophyllite, dissolution rates also show a strong dependence on pH, between 1 and 9.5. At the same pH, anthophyllite dissolves up to 8 times faster than tremolite. For pH > 9.5 this dependence is smooth, and it is probably associated with effects of saturation and carbonation. Dissolution is also non-stoichiometric with a faster release of Mg with respect to Si in acid media. SEM observations show differences in the breakage mechanism of the fibers. The anthophyllite particle breakage during dissolution consists of the splitting of bundle fibers parallel to the fiber longitudinal direction. However, for tremolite, other than fiber splitting, particles shorten induced by coalescence of etch pits developed perpendicular to c axe.  相似文献   

7.
8.
Sulphur isotopic compositions of sulphides within garnet-rich rocks and high-grade ore from the Broken Hill deposit, New South Wales, Australia, have been determined and show a range of values of –3.3 to +6.7 per mil. Thermochemical considerations, including the spread of values of 34S, suggest that the deposit was derived from a mixed source of sulphur in which seawater, reduced by inorganic processes, mixed with magmatic sulphur or that sulphate from contemporaneous seawater was reduced biogenically at low temperatures. Thermochemical considerations also suggest that pyrrhotite formed by desulphidation of pyrite so that the original Fe-S-O assemblage was pyrite ± magnetite.34S measurements show a broad range which is considered to be due to isotopic reequilibration during retrograde metamorphism and analytical and sampling technique. These data should not be used to indicate original temperatures of deposition or metamorphic temperatures associated with the various metamorphic events.  相似文献   

9.
The solubility of silver sulphide (acanthite/argentite) has been measured in aqueous sulphide solutions between 25 and 400°C at saturated water vapour pressure and 500 bar to determine the stability and stoichiometry of sulphide complexes of silver(I) in hydrothermal solutions. The experiments were carried out in a flow-through autoclave, connected to a high-performance liquid chromatographic pump, titanium sampling loop, and a back-pressure regulator on line. Samples for silver determination were collected via the titanium sampling loop at experimental temperatures and pressures. The solubilities, measured as total dissolved silver, were in the range 1.0 × 10−7 to 1.30 × 10−4 mol kg−1 (0.01 to 14.0 ppm), in solutions of total reduced sulphur between 0.007 and 0.176 mol kg−1 and pHT,p of 3.7 to 12.7. A nonlinear least squares treatment of the data demonstrates that the solubility of silver sulphide in aqueous sulphide solutions of acidic to alkaline pH is accurately described by the reactions0.5Ag2S(s) + 0.5H2S(aq) = AgHS(aq) Ks,1110.5Ag2S(s) + 0.5H2S(aq) + HS = Ag(HS)2− Ks,122Ag2S(s) + 2HS = Ag2S(HS)22− Ks,232where AgHS(aq) is the dominant species in acidic solutions, Ag(HS)2− under neutral pH conditions and Ag2S(HS)22− in alkaline solutions. With increasing temperature the stability field of Ag(HS)2− increases and shifts to more alkaline pH in accordance with the change in the first ionisation constant of H2S(aq). Consequently, Ag2S(HS)22− is not an important species above 200°C. The solubility constant for the first reaction is independent of temperature to 300°C, with values in the range logKs,111 = −5.79 (±0.07) to −5.59 (±0.09), and decreases to −5.92 (±0.16) at 400°C. The solubility constant for the second reaction increases almost linearly with inverse temperature from logKs,122 = −3.97 (±0.04) at 25°C to −1.89 (±0.03) at 400°C. The solubility constant for the third reaction increases with temperature from logKs,232 = −4.78 (±0.04) at 25°C to −4.57 (±0.18) at 200°C. All solubility constants were found to be independent of pressure within experimental uncertainties. The interaction between Ag+ and HS at 25°C and 1 bar to form AgHS(aq) has appreciable covalent character, as reflected in the exothermic enthalpy and small entropy of formation. With increasing temperature, the stepwise formation reactions become progressively more endothermic and are accompanied by large positive entropies, indicating greater electrostatic interaction. The aqueous speciation of silver is very sensitive to fluid composition and temperature. Below 100°C silver(I) sulphide complexes predominate in reduced sulphide solutions, whereas Ag+ and AgClOH are the dominant species in oxidised waters. In high-temperature hydrothermal solutions of seawater salinity, chloride complexes of silver(I) are most important, whereas in dilute hydrothermal fluids of meteoric origin typically found in active geothermal systems, sulphide complexes predominate. Adiabatic boiling of dilute and saline geothermal waters leads to precipitation of silver sulphide and removal of silver from solution. Conductive cooling has insignificant effects on silver mobility in dilute fluids, whereas it leads to quantitative loss of silver for geothermal fluids of seawater salinity.  相似文献   

10.
Magnesite (104) dissolution kinetics were studied in acidic aqueous solutions (2.0 < pH < 4.2) at temperatures between 60 and 90°C by atomic force microscopy (AFM). Comparison of dissolution fluxes obtained by AFM and chemical methods revealed six to seven times larger dissolution fluxes obtained by chemical analysis. Corresponding empirical activation energies were found to be 74 ±22 kJ/mol and 41 ± 4 kJ/mol (at pH 4.2) for the AFM and chemical methods, respectively. The empirical reaction order with respect to proton concentration was 0.36 ± 0.13 and 0.47 ± 0.03 for AFM and chemical methods, respectively. These comparisons suggest that the two experimental measurement methods differ as a result of the different sampling length scales associated with the methods. Negligible changes in step dissolution velocity with changes in bulk pH were found, suggesting that the principal source of increasing dissolution flux with decreasing pH is an increase in step density. However, the observed stable step orientation, which is dependent on pH, suggests that more than one proton adsorption equilibrium should be used to describe the surface chemistry of magnesite in acidic solution.  相似文献   

11.
Solubility experiments were performed on nanocrystalline scorodite and amorphous ferric arsenate. Nanocrystalline scorodite occurs as stubby prismatic crystals measuring about 50 nm and having a specific surface area of 39.88 ± 0.07 m2/g whereas ferric arsenate is amorphous and occurs as aggregated clusters measuring about 50–100 nm with a specific surface area of 17.95 ± 0.19 m2/g. Similar to its crystalline counterpart, nanocrystalline scorodite has a solubility of about 0.25 mg/L at around pH 3–4 but has increased solubilities at low and high pH (i.e. <2 and >6). Nanocrystalline scorodite dissolves incongruently at about pH > 2.5 whereas ferric arsenate dissolution is incongruent at all the pH ranges tested (pH 2–5). It appears that the solubility of scorodite is not influenced by particle size. The dissolution rate of nanocrystalline scorodite is 2.64 × 10−10 mol m−2 s−1 at pH 1 and 3.25 × 10−11 mol m−2 s−1 at pH 2. These rates are 3–4 orders of magnitude slower than the oxidative dissolution of pyrite and 5 orders of magnitude slower than that of arsenopyrite. Ferric arsenate dissolution rates range from 6.14 × 10−9 mol m−2 s−1 at pH 2 to 1.66 × 10−9 mol m−2 s−1 at pH 5. Among the common As minerals, scorodite has the lowest solubility and dissolution rate. Whereas ferric arsenate is not a suitable compound for As control in mine effluents, nanocrystalline scorodite that can be easily precipitated at ambient pressure and temperature conditions would be satisfactory in meeting the regulatory guidelines at pH 3–4.  相似文献   

12.
The flow of lava into the ocean at the shoreline of Kilauea Volcano during the ongoing Pu’u O’o eruption has allowed a detailed study of the geochemical interaction between lava and seawater. This paper focuses on the chemistry of the major and minor elements in the fluids that resulted from this interaction. The elemental enrichments in these fluids are dominated by three processes: (1) evaporation of water from seawater, which creates solutions enriched in the major elements found in seawater, (2) congruent dissolution of the basalt glass matrix, which is limited by the solubility of some of the elements in seawater, and (3) removal of volatile phases from the lava on contact with seawater.Using a simple model of volatile emanation (using published emanation coefficients) and congruent dissolution, we are able to explain the concentrations observed for the majority of elements in precipitation from the steam plume at the shoreline lava entry and in water allowed to interact with molten lava in controlled experiments. Fe, Al, Ti, and some of the rare earth elements (REEs) in precipitation samples from the steam plume at the lava entry were > 10,000-times enriched over their ambient seawater concentrations, suggesting that these elements may be useful for identifying submarine eruptions. The flux of elements from the Kilauea ocean lava entry is greater than that from a typical midocean ridge hydrothermal vent field for Al, Cd, Co, and the REEs, whereas the opposite is true for the remainder of the elements studied.  相似文献   

13.
Stirred flow-through experiments were conducted for the first time with planktonic biogenic silica (BSi). We investigated the dissolution kinetics of uncleaned and chemically cleaned BSi collected in ocean surface water, sediment traps, and sediments from the Norwegian Sea, the Southern Ocean, and the Arabian Sea. The solubility at 2°C is rather constant (1000 to 1200 μM). The dissolution rates are, however, highly variable, declining with water depth, and phytoplankton reactivity is two to three orders of magnitude higher than pure siliceous oozes. The reactivity decrease correlates well with an increase in the integrated peak intensity ratios of Si-O-Si/Si-OH measured by Fourier transform infrared (FTIR) spectroscopy. The removal of organic or inorganic coatings enhance the reactivity by at least an order of magnitude. Atomic Al/Si ratios of 0.03 to 0.08 in sedimentary diatom frustules decrease significantly to 0.02 as a result of removal of inorganic coatings and detritals present. Near equilibrium, the dissolution rates exhibit a linear dependence on the degree of undersaturation. At higher degrees of undersaturation—that is, at low concentrations of dissolved silica—the dissolution rates of uncleaned samples define a nonlinear trend.The nonlinear kinetics imply that the dissolution of natural BSi is strongly accelerated in silica-depleted surface waters. The FTIR results suggest that internal condensation reactions reduce the amount of surface reaction sites and are partly responsible for the reactivity decrease with depth. The high content of Al in sedimentary BSi is likely caused by precipitation of dissolved silica with Al dissolved from minerals in sediment. Nonbiogenic silica as coatings or detritals are partly responsible for the solubility and reactivity decrease of BSi in sediments. One order of magnitude different rate constants measured in Norwegian Sea and Southern Ocean sediment trap material support the so-called opal paradox—that is, high BSi accumulation rates in sediments in spite of low BSi production rates in surface waters of the Southern Ocean.  相似文献   

14.
Initial dissolution kinetics at orthoclase (001) and (010) cleavage surfaces were measured for ∼2 to 7 monolayers as a function of temperature using in situ X-ray reflectivity. The sensitivity of X-ray reflectivity to probe mineral dissolution is discussed, including the applicability of this approach for different dissolution processes and the range of dissolution rates (∼10−12 to 10−6 mol/m2/sec) that can be measured. Measurements were performed at pH 12.9 for the (001) surface and at pH 1.1 for the (001) and (010) surfaces at temperatures between 46 and 83°C. Dissolution at pH 12.9 showed a temperature-invariant process with an apparent activation energy of 65 ± 7 kJ/mol for the (001) cleavage surface consistent with previous powder dissolution results. Dissolution at pH 1.1 of the (001) and (010) surfaces revealed a similar process for both surfaces, with apparent activation energies of 87 ± 7 and 41 ± 7 kJ/mol, respectively, but with systematic differences in the dissolution process as a function of temperature. Longer-term measurements (five monolayers) show that the initial rates reported here at acidic pH are greater than steady-state rates by a factor of 2. Apparent activation energies at acidic pH differ substantially from powder dissolution results for K-feldspar; the present results bracket the value derived from powder dissolution measurements. The difference in apparent activation energies for the (001) and (010) faces at pH 1.1 reveals an anisotropy in dissolution kinetics that depends strongly on temperature. Our results imply a projected ∼25-fold change in the ratio of dissolution rates for the (001) and (010) surfaces between 25 and 90°C. The dissolution rate of the (001) surface is higher than that of the (010) surface above 51°C and is projected to be lower below this temperature. These results indicate clearly that the kinetics and energetics of orthoclase dissolution at acidic pH depend on crystal orientation. This dependence may reflect the different manifestation of the Al-Si ordering between the T1 and T2 tetrahedral sites at these two crystal faces and can be rationalized in terms of recent theoretical models of mineral dissolution.  相似文献   

15.
Dissolution of natural hydrate cores was measured using time-lapse photography on the seafloor at Barkley Canyon (850 m depth and 4.17 °C). Two types of hydrate fabrics in close contact with one another were studied: a “yellow” hydrate stained with condensate oil and a “white” hydrate. From thermogenic origins, both fabrics contained methane as well as heavier hydrocarbons. These multi-component hydrates were calculated to be well within p-T stability conditions (<200 m water depth needed at 4.17 °C). While stable in pressure and temperature, the hydrates were bathed in under-saturated seawater, which promoted dissolution. The flux of gas from the shrinking yellow hydrate core was 0.15 ± 0.01 mmol gas/m2 s, while the white hydrate dissolved faster at 0.25 ± 0.02 mmol gas/m2 s. To determine the controlling mechanism for the observed changes in the hydrate cores, experimental results were compared with an engineering correlation for convective mass transfer. Using water velocity as a fitting parameter, the correlation agreed well with results from a previous dissolution experiment on well-characterized synthetic hydrates. Even with a number of other unknowns, when applied to the natural hydrate, the mass transfer correlation predicted the dissolution rate within 20%. This seafloor-based experiment, along with visual observations of seafloor hydrate dissolution over a 3-day period, were used to further understand the fate of natural seafloor hydrates exposed on the seafloor. By showing that mass transfer is the rate-controlling mechanism for dissolution of these natural hydrate outcrops, proper hydrodynamic calculations can be employed to give a refined estimate on hydrate dissolution rates.  相似文献   

16.
Atomic force microscopy (AFM) was used to study the rates of migration of the (10¯1 4) plane of a single-crystal of calcite dissolving in 0.1 M NaCl aqueous solutions at room temperature. The solution pH and PCO 2 controlled in the ranges 4.4 < pH < 12.2 and 0 < PCO 2 < 10-3.5 atm (ambient), respectively. Measured step velocities were compared with the mineral dissolution rates determined from the calcium fluxes. The step velocity is defined as the average of the velocities of the obtuse and acute steps. Rates of step motion increased gradually from 1.4(±0.2) at pH 5.3 to 2.4(±0.3) nm s-1 at pH 8.2, whereas the rates inverted and decreased to the minimum value of 0.69(±0.18) nm s-1 at pH 10.8. For pH > 10.8, only the velocity of the obtuse steps increased as pH increased, whereas that of acute steps gradually decreased.The dissolution rate of the mineral can be calculated from the measured step velocities and average slope, which is proportional to the concentration of exposed monomolecular steps on the surface. The average slope of the dissolving mineral, measured at pH 5.6 and 9.7, was 0.026 (±0.015). Using this slope, we calculate bulk dissolution rates for 5.3 < pH < 12.2 of 4.9(±3.0) × 10-11 to 1.8(±1.0) × 10-10 mol cm-2 s-1. The obtained dissolution rate can be expressed by the following empirical equation:Rdss = 10-4.66(±0.13)[H+] + 10-3.87(±0.06)[HCO3 -] + 10-7.99(plusmn; 0.08)[OH-]We propose that calcite dissolution in these solutions is controlled by elementary reactions that are similar to those that control the dissolution of other amphoteric solids, such as oxides. The mechanisms include the proton-enhanced hydration and detachment of calcium-carbonate ion pairs. The detachments are enhanced by the presence of adsorbed nucleophiles, such as hydroxyl and bicarbonate ions, and by protons adsorbed to key oxygens. A molecular model is proposed that illustrates these processes.  相似文献   

17.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

18.
During equilibration of K-feldspar, quartz and muscovite with dilute KCl-solutions, the change in pH of the solution was measured as a function of time. The resulting equilibrium constant, K T = aK + /aH +, is 104.21±0.06, 105.86±0.03 and 106.01±0.03 at 300, 60 and 30° C respectively (standard states at 1 bar) and are consistent with the best higher temperature data. At 30° C this constant is consistent with the aK + /aH + ratio of seawater. From K T and the activity of K + in seawater, a pH of 8.2 is calculated, essentially identical with the pH which results from dissolution of CaCO3 under atmospheric CO2-pressure. Consequently, detrital K-feldspar, quartz, muscovite, and calcite are stable in seawater. Apparently, the seawater pH is controlled by CaCO3 as well as K-feldspar, quartz and muscovite. Independently both equilibria show virtually the same pH, within the variability due to disordering, solid solution and surface energy effects.Assuming that the K-concentrations of pore solutions vary between about 4000 and 40 ppm, these solutions have alkalic pH-values in the temperature range between 30 and 300° C if K-feldspar, quartz and muscovite are present. In limestones the pH is fixed by the dissociation of CaCO3; the occasionally observed formation of K-feldspar in these rocks requires a minimum K-concentration of approximately 4 ppm.

Die Untersuchungen wurden am Department of Mineralogy and Geochemistry der Pennsylvania State University durchgeführt. Der erste Autor (H. E. Usdowski) bedankt sich für die freundliche Aufnahme und die ausgezeichneten Arbeitsmöglichkeiten. Besonderer Dank gilt Dr. George Helz für viele Diskussionen und manche Hilfe im Labor. Die Deutsche Forschungsgemeinschaft hat die Untersuchungen durch einen Forschungsauftrag unterstützt.  相似文献   

19.
Study on the kinetics of iron oxide leaching by oxalic acid   总被引:2,自引:0,他引:2  
The presence of iron oxides in clay or silica raw materials is detrimental to the manufacturing of high quality ceramics. Although iron has been traditionally removed by physical mineral processing, acid washing has been tested as it is more effective, especially for extremely low iron (of less than 0.1% w/w). However, inorganic acids such as sulphuric or hydrochloric acids easily contaminate the clay products with SO42− and Cl, and therefore should be avoided as much as possible. On the other hand, if oxalic acid is used, any acid left behind will be destroyed during the firing of the ceramic products. The characteristics of dissolution of iron oxides were therefore investigated in this study.The dissolution of iron oxides in oxalic acid was found to be very slow at temperatures within the range 25–60 °C, but its rate increases rapidly above 90 °C. The dissolution rate also increases with increasing oxalate concentration at the constant pH values set within the optimum range of pH2.5–3.0. At this optimum pH, the dissolution of fine pure hematite (Fe2O3) (105–140 μm) follows a diffusion-controlled shrinking core model. The rate expression expressed as 1 − (2 / 3)x − (1 − x)2 / 3 where x is a fraction of iron dissolution was found to be proportional to [oxalate]1.5.The addition of magnetite to the leach liquor at 10% w/w hematite was found to enhance the dissolution rate dramatically. Such addition of magnetite allows coarser hematite in the range 0.5–1.4 mm to be leached at a reasonable rate.  相似文献   

20.
The dissolution rates of natural fluorapatite (FAP), Ca10(PO4)6F2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ? pH ? 7, FAP dissolution rates are pH independent at 7 ? pH ? 10, and FAP dissolution rates again decrease with increasing pH at pH ? 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10.Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号