首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

2.
Some 15% of solar flares having a soft X-ray flux above GOES class C5 are reported to lack coherent radio emission in the 100 – 4000 MHz range (type I – V and decimetric emissions). A detailed study of 29 such events reveals that 22 (76%) of them occurred at a radial distance of more than 800″ from the disk center, indicating that radio waves from the limb may be completely absorbed in some flares. The remaining seven events have statistically significant trends to be weak in GOES class and to have a softer non-thermal X-ray spectrum. All of the non-limb flares that were radio-quiet above 100 MHz were accompanied by metric type III emission below 100 MHz. Out of 201 hard X-ray flares, there was no flare except near the limb (R>800″) without coherent radio emission in the entire meter and decimeter range. We suggest that flares above GOES class C5 generally emit coherent radio waves when observed radially above the source.  相似文献   

3.
Aschwanden  Markus J.  Brown  John C.  Kontar  Eduard P. 《Solar physics》2002,210(1-2):383-405
We present an analysis of hard X-ray imaging observations from one of the first solar flares observed with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft, launched on 5 February 2002. The data were obtained from the 22 February 2002, 11:06 UT flare, which occurred close to the northwest limb. Thanks to the high energy resolution of the germanium-cooled hard X-ray detectors on RHESSI we can measure the flare source positions with a high accuracy as a function of energy. Using a forward-fitting algorithm for image reconstruction, we find a systematic decrease in the altitudes of the source centroids z(ε) as a function of increasing hard X-ray energy ε, as expected in the thick-target bremsstrahlung model of Brown. The altitude of hard X-ray emission as a function of photon energy ε can be characterized by a power-law function in the ε=15–50 keV energy range, viz., z(ε)≈2.3(ε/20 keV)−1.3 Mm. Based on a purely collisional 1-D thick-target model, this height dependence can be inverted into a chromospheric density model n(z), as derived in Paper I, which follows the power-law function n e(z)=1.25×1013(z/1 Mm)−2.5 cm−3. This density is comparable with models based on optical/UV spectrometry in the chromospheric height range of h≲1000 km, suggesting that the collisional thick-target model is a reasonable first approximation to hard X-ray footpoint sources. At h≈1000–2500 km, the hard X-ray based density model, however, is more consistent with the `spicular extended-chromosphere model' inferred from radio sub-mm observations, than with standard models based on hydrostatic equilibrium. At coronal heights, h≈2.5–12.4 Mm, the average flare loop density inferred from RHESSI is comparable with values from hydrodynamic simulations of flare chromospheric evaporation, soft X-ray, and radio-based measurements, but below the upper limits set by filling-factor insensitive iron line pairs.  相似文献   

4.
Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.  相似文献   

5.
6.
We studied the characteristics of Coronal Mass Ejections (CMEs) associated with solar flares and Deca-Hectometric (DH) type II radio bursts, based on source position during 23rd solar cycle (1997–2007). We classified these CME events into three groups using solar flare locations as, (i) disk events (0–30); (ii) intermediate events (31–60) and (iii) limb events (61–90). Main results from this studies are, (i) the number of CMEs associated with solar flares and DH-type IIs decreases as the source position approaches from disk to limb, (ii) most of the DH CMEs are halo (72%) in disk events and the number of occurrence of halo CMEs decreases from disk to limb, (iii) the average width and speed of limb events (164 and 1447 km s−1) are higher than those of disk events (134 and 1035 km s−1) and intermediate events (146 and 1170 km s−1) and (iv) the average accelerations for disk, intermediate and limb events are −8.2 m s−2, −10.3 m s−2 and −4.5 m s−2 respectively. These analysis of CMEs properties show more dependency on longitude and it gives strong evidence for projection effect.  相似文献   

7.
We present the first results from the low-energy detector payload of the solar X-ray spectrometer (SOXS) mission, which was launched onboard the GSAT-2 Indian spacecraft on May 08, 2003 by the GSLV-D2 rocket to study solar flares. The SOXS low-energy detector (SLD) payload was designed, developed, and fabricated by the Physical Research Laboratory (PRL) in collaboration with the Space Application Centre (SAC), Ahmedabad and the Indian Space Research Organization (ISRO) Satellite Centre (ISAC), Bangalore. The SLD payload employs state-of-the-art, solid-state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (−20 °C). The energy ranges of the Si PIN and CZT detectors are 4 – 25 and 4 – 56 keV, respectively. The Si PIN provides sub-keV energy resolution, while the CZT provides ~1.7 keV energy resolution throughout the energy range. The high sensitivity and sub-keV energy resolution of the Si PIN detector allows measuring the intensity, peak energy, and the equivalent width of the Fe-line complex at approximately 6.7 keV, as a function of time in all ten M-class flares studied in this investigation. The peak energy (E p) of the Fe-line feature varies between 6.4 and 6.7 keV with increase in temperature from 9 to 58 MK. We found that the equivalent width (w) of the Fe-line feature increases exponentially with temperature up to 30 MK and then increases very slowly up to 40 MK. It remains between 3.5 and 4 keV in the temperature range of 30 – 45 MK. We compare our measurements of w with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both E p and w with temperature as being to the changes in the ionization and recombination conditions in the plasma during the flare, and as a consequence, the contribution from different ionic emission lines also varies.  相似文献   

8.
We present the first results from the ‘Low Energy Detector’ pay-load of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20°C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼1.7keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy (E p) of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width (ω) of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements ofw with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both Epand ω with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.  相似文献   

9.
Using RHESSI and some auxiliary observations we examine possible connections between the spatial and temporal structure of nonthermal hard X-ray (HXR) emission sources from the two-ribbon flares of 29 May 2003 and 19 January 2005. In each of these events quasi-periodic pulsations (QPP) with time period of 1 – 3 minutes are evident in both hard X rays and microwaves. The sources of nonthermal HXR emission are situated mainly at the footpoints of the flare arcade loops observed by TRACE and the SOHO/EIT instrument in the EUV range. At least one of the sources moves systematically during and after the QPP phase in each flare. The sources move predominantly parallel to the magnetic inversion line during the 29 May flare and along flare ribbons during the QPP phase of both flares. By contrast, the sources start to show movement perpendicular to the flare ribbons with velocity comparable to that along the ribbons’ movement after the QPP phase. The sources of each pulse are localized in distinct parts of the ribbon during the QPP phase. The measured velocity of the sources and the estimated energy release rate do not correlate well with the flux of the HXR emission calculated from these sources. The sources of microwaves and thermal HXRs are situated near the apex of the flare loop arcade and are not stationary either. Almost all of the QPP as well as some pulses of nonthermal HXR emission during the post-QPP phase reveal soft – hard – soft spectral behavior, indicating separate acts of electron acceleration and injection. In our opinion at least two different flare scenarios based on the Nakariakov et al. (2006, Astron. Astrophys. 452, 343) model and on the idea of current-carrying loop coalescence are suitable for interpreting the observations. However, it is currently not possible to choose between them owing to observational limitations.  相似文献   

10.
We report very high temporal and spectral resolution interferometric observations of some unusual solar radio bursts near 1420 MHz. These bursts were observed on 13 September 2005, 22 minutes after the peak of a GOES class X flare from the NOAA region 10808. Our observations show 11 episodes of narrow-band intermittent emission within a span of ≈ 8 s. Each episode shows a heavily frequency-modulated band of emission with a spectral slope of about −245.5 MHz s−1, comprising up to 8 individual blobs of emission and lasts for 10 – 15 ms. The blobs themselves have a spectral slope of ≈ 0 MHz s−1, are ≈ 200 – 250 kHz wide, appear every ≈ 400 kHz and last for ≈ 4 – 5 ms. These bursts show brightness temperatures in the range 1012 K, which suggests a coherent emission mechanism. We believe these are the first high temporal and spectral resolution interferometric observations of such rapid and narrow-bandwidth solar bursts close to 1420 MHz and present an analysis of their temporal and spectral characteristics.  相似文献   

11.
The properties of powerful (flux >10−19 W m−2 Hz−1) type III bursts observed in July – August 2002 by the radio telescope UTR-2 at frequencies 10 – 30 MHz are analyzed. Most bursts have been registered when the active regions associated to these bursts were located near the central meridian or at 40° – 60° to the East or West from it. All powerful type III bursts drift from high to low frequencies with frequency drift rates 1 – 2.5 MHz s−1. It is important to emphasize that according to our observations the drift rate is linearly increasing with frequency. The duration of the bursts changes mainly from 6 s at frequency 30 MHz up to 12 s at 10 MHz. The instantaneous frequency bandwidth does not depend on the day of observations, i.e. on the disk location of the source active region, and is increasing with frequency.  相似文献   

12.
We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet Sun, using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager (NFI) on a 82″×82″ FOV during 75 min with a time step of 28.75 s and 0.08″ pixel size. Vertical velocities were computed at three atmospheric levels (80, 130, and 180 km) using the bisector technique, allowing the determination of energy flux to be made in the range 3 – 10 mHz using two complementary methods (Hilbert transform and Fourier power spectrum). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. We found that the net energy flux is upward. In the range 3 – 10 mHz, a full FOV space and time averaged flux of 2700 W m−2 (lower layer 80 – 130 km) and 2000 W m−2 (upper layer 130 – 180 km) is concentrated in less than 1 % of the solar surface in the form of narrow (0.3″) AE. Their total duration (including rise and decay) is of the order of 103 s. Inside each AE, the mean flux is 1.6×105 W m−2 (lower layer) and 1.2×105 W m−2 (upper). Each event carries an average energy (flux integrated over space and time) of 2.5×1019 J (lower layer) to 1.9×1019 J (upper). More than 106 events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.  相似文献   

13.
We analyze a special kind of temporal fine structure in microwave radio emission for the 25 August 1999 solar flare observed by the PMO spectrometer over the range of 4.5 – 7.5 GHz. This flare displays continuum emission after a group of reverse-slope type III bursts around 6 GHz. High-resolution dynamic spectra reveal three evolving emission lines (EELs) following the type III group. They are characterized by isolated, narrow, and continuous emission strips, which display frequency fluctuations with time. Their frequency-drift rates are between −2 and 3 GHz s−1. Distinct from the EELs at lower frequencies, three EELs have a very short duration of a few seconds. They show an average bandwidth of Δf≈330 MHz and a relative bandwidth of Δf/f≈0.057. This is the first time that this kind of fine structure has been observed around 6 GHz.  相似文献   

14.
The famous extreme solar and particle event of 20 January 2005 is analyzed from two perspectives. Firstly, using multi-spectral data, we study temporal, spectral, and spatial features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of solar energetic particles (SEP) arriving at Earth, i.e., acceleration in flares, or shocks ahead of coronal mass ejections (CMEs). Our analysis shows that all electromagnetic emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. In particular, a huge (≈ 105 sfu) radio burst with a high frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in very strong magnetic fields. Thus, protons and electrons responsible for various flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the ground-level enhancement (GLE), and highest-energy gamma-rays identified with π 0-decay emission, are similar and closely correspond in time. The origin of the π 0-decay gamma-rays is argued to be the same as that of lower-energy emissions, although this is not proven. On the other hand, we estimate the sky-plane speed of the CME to be 2 000 – 2 600 km s−1, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We therefore conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the major flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred nearly simultaneously within the flare region. However, our analysis does not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate at later stages of the SEP event. S.N. Kuznetsov deceased 17 May 2007.  相似文献   

15.
In our recent paper (Jakimiec and Tomczak, Solar Physics 261, 233, 2010) we investigated quasi-periodic oscillations of hard X-rays during the impulsive phase of solar flares. We have come to the conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares that show clear quasi-periodic sequences of the HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain the observed properties of the HXR oscillations. The main results are the following: i) Low-amplitude quasi-periodic oscillations occur before the impulsive phase of some flares. ii) The quasi-periodicity of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. iii) During the impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within a HXR loop-top source. iv) The quick development of the impulsive phase is due to feedback between the pressure pulses by accelerated electrons and the amplitude of the magnetic-trap oscillation. v) The electron number density and magnetic field strength values obtained for the HXR loop-top sources in several flares fall within the limits of N≈(2 – 15)×1010 cm−3, B≈(45 – 130) gauss. These results show that the HXR quasi-periodic oscillations contain important information about the energy release in solar flares.  相似文献   

16.
We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6 – 10 keV count-rate when RHESSI’s full sensitivity was available in order to find the smallest events (Christe et al. in Astrophys. J. 677, 1385, 2008). Between March 2002 and March 2007, a total of 25 006 events were found. Source locations were determined in the 4 – 10 keV, 10 – 15 keV, and 15 – 30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h)∝exp (−h/λ) where λ=6.1±0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, γ=3.1±0.1 is also consistent with the data. Interpreted as thermal loop-top sources, these heights are compared to loops generated by a potential-field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential-field loop height distribution, which may be a signature of the flare energization process.  相似文献   

17.
In the present investigation we measure the differential rotation of strong magnetic flux during solar cycles 21 – 23 with the method of wavelet transforms. We find that the cycle-averaged synodic rotation rate of strong magnetic flux can be written as ω=13.47−2.58sin 2 θ or ω=13.45−2.06sin 2 θ−1.37sin 4 θ, where θ is the latitude. They agree well with the results derived from sunspots. A north–south asymmetry of the rotation rate is found at high latitudes (28°<θ<40°). The strong flux in the southern hemisphere rotates faster than that in the northern hemisphere by 0.2 deg day−1. The asymmetry continued for cycles 21 – 23 and may be a secular property.  相似文献   

18.
We have used Yohkoh and GOES X-ray observations to investigate flares with a long rising phase. We have found that a characteristic feature of such flares is a long time interval, Δ t ≥ 20 min, between the temperature maximum and the maximum of the emission measure. We have carried out detailed analysis for 10 limb flares of this type. Time variation of the heating function, EH(t), has been determined for their loop-top X-ray kernels. The time variation of EH(t), together with the temperature–density diagnostic diagrams, have been used to explain the large value of the time interval, Δ t. The main point is that for these flares the heating function EH(t) decreases so slowly after the temperature maximum, that for the long time, Δ t, the energy flux reaching flare foot points is sufficient to maintain significant chromospheric evaporation. Investigation of the flare evolution in the temperature–density diagnostic diagrams allowed us to work out a new method of determination of the density for flare kernels. This method can be applied to all the kernels for which their altitudes can be estimated. The advantage of this method is that for the density determination it is not necessary to assume what is the extension of the emitting plasma along the line of sight.  相似文献   

19.
A detailed analysis of characteristics of coronal mass ejections and flares associated with deca-hectometer wavelength type-II radio bursts (DH-CMEs and DH-flares) observed in the period 1997–2008 is presented. A sample of 62 limb events is divided into two populations known as after-flare CMEs (AF-CMEs) and before-flare CMEs (BF-CMEs) based on the relative timing of the flare and CME onsets. On average, AF-CMEs (1589 km s−1) have more speed than the BF-CMEs (1226 km s−1) and the difference between mean values are highly significant (P∼2%). The average CME nose height at the time of type-II start is at larger distance for AF-CMEs than the BF-CMEs (4.89 and 3.84 R o, respectively). We found a good anti-correlation for accelerating (R a=−0.89) and decelerating (R d=−0.78) AF-CMEs. In the case of decelerating BF-CMEs, the correlation seems to be similar to that for decelerating AF-CMEs (R d=−0.83). The number of decelerating AF-CMEs is 51% only; where as, the number of decelerating BF-CMEs is 83%. The flares associated with BF-CMEs have shorter rise and decay times than flares related to AF-CMEs. We found statistically significant differences between the two sets of associated DH-type-II bursts characteristics: starting frequency (P∼4%), drift rate (P∼1%), and ending frequency (P∼6%). The delay time analysis of DH-type-II start and flare onset times shows that the time lags are longer in AF-CME events than in BF-CME events (P≪1%). From the above results, the AF-CMEs which are associated with DH-type-II bursts are found to be more energetic, associated with long duration flares and DH-type-IIs of lower ending frequencies.  相似文献   

20.
We report on the detailed analysis of i) differences between the properties of type IIs with various starting frequencies (high: ≥100 MHz; low: ≤50 MHz; mid: 50 MHz ≤f≤ 100 MHz) and ii) the properties of CMEs and flares associated with them. For this study, we considered a sample of type II radio bursts observed by Culgoora radio spectrograph from January 1998 to December 2000. The X-ray flares and CMEs associated with these events are identified using GOES and SOHO/LASCO data. The secondary aim is to study the frequency dependence on other properties of type IIs, flares, and CMEs. We found that the type IIs with high starting frequencies have larger drift rate, relative drift rate, and shock speed than the type IIs with low starting frequencies. The flares associated with high frequency type IIs are of impulsive in nature with shorter rise time, duration and delay between the flare start and type II start times than the low frequency type IIs. There is a distinct power – law relationship between the flare parameters and the starting frequencies of type II bursts, whereas the trend in the CME parameters shows low correlation. While the mean speed of CMEs is larger for the mid-frequency group, it is nearly the same for the high and low frequency groups. On the other hand, the percentage of CME association (90%) is larger for low frequency type IIs than for the high frequency type IIs (75%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号