首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The first occurrence of stishovite in an iron meteorite, Muonionalusta (group IVA), is reported. The mineral occurs intimately mixed with amorphous silica, forming tabular grains up to ?3 mm wide, with a hexagonal outline. It was identified using X‐ray diffraction and Raman microspectroscopy. The unit‐cell parameters of stishovite are a = 4.165(3) Å and c = 2.661(6) Å, and its chemical composition is nearly pure SiO2. Raman spectra show relatively sharp bands at 231 and 754 cm?1 and a broad band with an asymmetric shape and a maximum around 500 cm?1. The rare grains are found within troilite nodules together with chromite, daubreelite, and schreibersite. From their composition and morphology, and by comparisons with silica inclusions in, e.g., the Gibeon IVA iron, we conclude that these rare grains represent pseudomorphs after tridymite. The presence of stishovite in Muonionalusta is suggested to reflect shock metamorphic conditions in the IVA parent asteroid during a cosmic impact event.  相似文献   

2.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

3.
The absolute cross-sections for the excitation of the 989 Å, 1027 Å, 7990 Å, 8446 Å, 1.1287 μm and 1.3164 μm multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O+ radiative recombination and of electron-impact excitation of the OI(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the λ 989 Å and λ. 1027 Å multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI e.u.v. emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures. It is also suggested that the λ 1027 Å radiation observed in auroral spectra is actually due to molecular nitrogen band emission that has been enhanced by entrapment effects and not to the excitation of the 2p 3P-3d 3D0 transition of atomic oxygen as believed previously.  相似文献   

4.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

5.
Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an “ancient” feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe‐oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95‐97), pyroxene (En74‐75, Fs21‐22,Wo3‐4), and olivine (Fo66‐67) are distributed in and adjacent to the Fe‐oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X‐ray absorption near edge spectroscopy (XANES) and X‐ray diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe‐magnetite or wüstite–magnetite oxygen buffer. This discovery provides direct evidence for oxidized conditions on the Moon. Thermodynamic modeling shows that magnetite could have been formed from oxidization‐driven mineral replacement of Fe‐metal or desulphurisation from Fe‐sulfides (troilite) at low temperatures (<570 °C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidizing conditions may have arisen from vapor transport during degassing of a magmatic source region, or from a hybrid endogenic–exogenic process when gases were released during an impacting asteroid or comet impact.  相似文献   

6.
In this paper, we discuss the occurrence of liebermannite (IMA 2013-128), KAlSi3O8, a new, shock-generated, high-pressure tetragonal hollandite-type structure silicate mineral, in the Zagami basaltic shergottite meteorite. Liebermannite crystallizes in space group I4/m with Z = 2, cell dimensions of = 9.15 ± 0.14 (1σ) Å, = 2.74 ± 0.13 Å, and a cell volume of 229 ± 19 Å3 (for the type material), as revealed by synchrotron diffraction. In Zagami, liebermannite likely formed via solid-state transformation of primary igneous K-feldspar during an impact event that achieved pressures of ~20 GPa or more. The mineral name is in honor of Robert C. Liebermann, a high-pressure mineral physicist at Stony Brook University, New York, USA.  相似文献   

7.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

8.
Abstract— The Yarle Lakes 001 meteorite was a single stone of 913 g found approximately 20 km north of Watson, South Australia, in 1990 October. It consists of olivine (Fa18.7 ± 0.4, n = 30), low-Ca pyroxene (Fs16.6 ± 0.2 Wo 12 + 0.4, n = 15). feldspar, high-Ca pyroxene, metallic Fe-Ni and troilite. Based on texture and mineral chemistry, Yarle Lakes 001 is classified as a H5 chondrite of shock stage S3.  相似文献   

9.
Abstract— The Elephant Moraine A79002 (EETA79002) diogenite is a fragmental breccia with a subtle lightdark structure. It is composed of orthopyroxene, with minor olivine, chromite, and ubiquitous, inhomogeneously distributed, approximately 5–500 μm sized troilite and metal grains. These latter are present in the matrix, and as inclusions in and as symplectic intergrowths with orthopyroxene and olivine. Trace amounts of silica and diopside are also present. Most orthopyroxene compositions (typical orthopyroxenes) are in the narrow range Wo2.1–2.7En74.1–75.6Fs22.2–23.8 like those of most diogenites. A few magnesian orthopyroxenes are present with compositions of Wo1.7‐2.5En77.5–80.2 Fs18.2–20.3. These are among the most magnesian orthopyroxenes known from diogenites. A few ferroan orthopyroxenes have compositions of Wo2.1–2.9En71.7–73.7Fs24.2–25.5. Differences in Al2O3, TiO2, and Cr2O3 between the different orthopyroxene groups are inconsistent with a simple igneous fractionation relationship between them. Olivine compositions are Fo75.0–76.9. The olivines could be in equilibrium with the magnesian orthopyroxenes, but not with the typical or ferroan orthopyroxenes that form the bulk of EETA79002. Metal grains exhibit a range of Ni and Co contents and Ni/Co ratios; their compositions indicate that they are primary igneous metal. Metal and troilite grains are more prevalent in the dark samples. The trace incompatible lithophile element contents of 16 samples are remarkably uniform. Their Yb concentrations are all within their 2s? analytical uncertainties of the mean. The uniformity and low content of light rare earth elements in EETA79002 indicate that negligible amounts of a trapped liquid component, or foreign material mixed in the breccia, could be present. The siderophile and chalcophile element data show that the light‐dark structure is due to the distribution of metal and troilite grains; dark samples contain higher Ni, Co, and Se compared to light samples. Meteorite EETA79002 appears to contain material from three or more related plutons, a magnesian harzburgite, and two orthopyroxenites, and is a genomict breccia.  相似文献   

10.
Abstract Small crystals of an optically uniaxial Ti-bearing calcium aluminosilicate were discovered in a mixer furnace slag consisting mostly of åkermanitic melilite. The crystals have the same unit cell as those observed for a phase crystallized from slowly-cooled melts used to simulate the formation of aluminous inclusions in meteorites. Moreover, compositions of synthetic and meteoritic occurrences of the phase are all very similar and can be expressed in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. Thus, crystallographic and crystallochemical information obtained from crystals in the mixer furnace slag can be used to constrain the origin of similar crystals found in meteoritic inclusions. We separated crystals from the mixer furnace slag by acid leaching; some were used for EPMA analysis, others were crushed for study by TEM methods or X-ray powder diffraction. Convergent beam electron diffraction shows that the crystals belong to the trigonal (rhombohedral) class and have point group symmetry 3m. X-ray powder diffraction gives the unit cell parameters a = 0.791 ± 0.009 nm, c = 0.492 ± 0.006 nm. The results suggest that the mineral has space group symmetry P3ml or P31m.  相似文献   

11.
Fabry-Perot interferometry of Comet Kohoutek (1973f) at 1.1 μm with a resolution of 1.2 Å showed emission features identified as OH and CN lines in addition to a strong Fraunhofer continuum. Central intensities have been derived for three cases (uniform, gaussian, and gaussian plus ??1 law) of brightness profiles in the comet coma. Limits for CH4, H2O, HeI, SiL and CrI are also derived.  相似文献   

12.
We present far-infrared observations of Saturn in the wavelength band 76–116 μm, using a balloon-borne 75-cm telescope launched on 10 December 1980 from Hyderabad, India, when B′, the Saturnicentric latitude of the Sun, was 4°.3. Normalizing with respect to Jupiter, we find the average brightness temperature of the disk-ring system to be 90 ± 3° K. Correcting for the contribution from rings using experimental information on the brightness temperature of rings at 20 μm, we find TD, the brightness temperature of the disk, to be 96.9 ± 3.5° K. The systematic errors and the correction for the ring contribution are small for our observations. We, therefore, make use of our estimate of TD and earlier observations of Saturn when contribution from the rings was large and find that for wavelengths greater than 50 μm, there is a small reduction in the ring brightness temperature as compared to that at 20 μm.  相似文献   

13.
Spectroscopic observations of Comet Hale-Bopp were made at the 2.6 m Shajn Telescope of the Crimean Astrophysical Observatory. Some spectra were obtained with high spectral resolution, FWHM = 0.18–0.4Å, in the coude focus on February 22 and 26, 1997. The observations were made in selected spectral windows (4805–4872 Å,6528–6595 Å, 7186–7253 Å, 8276–8408 Å).The spectrograph slit was centered on the nucleus and had dimensions of 25.2 × 0.6 arcsec2 on the plane of the sky. The continuum spatial profiles were extremely asymmetrical toward the Sun. However, the continuum-subtracted spatial profiles of the molecular emissions were symmetrical relative to the nucleus, except for C2. The shape of the spatial profiles of the C2 emissions is similar to that one of continuum but is more flattened. So, there are evidences that dust can be an additional source of the C2 radicals in the cometary coma. The main aim of our research was identification of the cometary emissions. Using recent laboratory spectroscopic data we identified newlines of C2 associated with the transitions from high rotational levels in the 4805–4872 Å spectral region. We detected cometary Hα emission as well. Emissions of NH2, H2O+,and C2 (Phillips system) were found in the red spectral windows. Some emission features are still unassigned.  相似文献   

14.
Abstract— A large (7 mm in diameter) Allende type B inclusion has a typical bulk composition and a unique structure: a fassaite‐rich mantle enclosing a melilite‐rich core. The core and mantle have sharply contrasting textures. In the mantle, coarse (?1 mm across), subhedral fassaite crystals enclose radially oriented melilite laths about 500 μm long that occur at the inclusion rim. The core consists of blocky melilite grains 20–50 μm across and poikilitically enclosed in anhedral fassaite grains that are optically continuous over ?1 mm. Another unique feature of this inclusion is that melilite laths also extend from the core into the mantle. Fassaite in both the core and mantle is very rich in fine‐grained (1–10 μm) spinel. The rim laths are normally zoned (Åk30–70) inward from the rim of the inclusion with reverse zoning over the last ?200 μm to crystallize. A very wide range of melilite compositions is found in the core of the inclusion, where gehlenitic grains (Åk5–12) occur. These grains are enclosed in strongly zoned (Åk15–70) overgrowths. The gehlenitic cores and innermost parts of the overgrowths are Na2O‐free, but the outer parts of the overgrowths are not. In the laths at the rim, Na2O decreases inward from the rim, then increases. Fassaite in the core has the same range of Ti contents as that in the mantle: 2–9 wt% TiO2 + Ti2O3. Two melting events are required to account for the features of this inclusion. In the first event, the precursor assemblage is heated to ?1400 °C and melts except for gehlenitic (Åk5–12) melilite and some spinel. These grains become concentrated in the core. During cooling, Na2O‐free melilite nucleates at the rim of the inclusion and on the relict grains in the core. After open system secondary alteration, the inclusion is heated again, but only to ?1260 °C. Melilite more gehlenitic than Åk40 does not melt. During cooling, Na2O‐bearing melilite crystallizes as small, blocky grains and laths in the core and as overgrowths on relict grains in the core and at the rim. Eventually melilite co‐crystallizes with fassaite, leading to the reverse zoning observed in the laths. The coexistence in this inclusion of Na‐free and Na‐bearing melilite, plus a positive correlation between Na2O and åkermanite contents in melilite in an inclusion with a bulk Mg isotopic composition that is mass‐fractionated in favor of the heavy isotopes, are both consistent with at least two melting events. Several other recently described coarse‐grained inclusions also have features consistent with a sequence of early, high‐temperature melting, secondary alteration, and remelting at a lower temperature, suggesting that remelting of refractory inclusions was a common occurrence in the solar nebula.  相似文献   

15.
Abstract— We report the results of a study of TS2, an unusual compact Type A inclusion from Allende. A distinctive, major feature of this inclusion is that many of its melilite crystals have no dominant core-rim zoning but instead consist of 50–200 μm patches of Mg-rich melilite (Åk32–62, median Åk51) set in or partially enclosed by, and optically continuous with, relatively Al-rich melilite (Åk25–53, median Åk38). The Al-rich regions have jagged, dendritic shapes but occur within crystals having straight grain boundaries. Another unusual feature of this inclusion is the size and spatial distribution of spinel. In many places, especially in the interior of the inclusion, the aluminous melilite encloses numerous, fine (0.5–5 μm) inclusions of spinel and minor perovskite and fassaite. The latter phases also occur as isolated grains throughout the inclusion. Coarse-grained spinel, ~50–150 μm across, occurs in clumps and chains enclosed in relatively Mg-rich melilite, whereas none of the fine spinel grains are clumped together. The sample also contains a spinel-free palisade body, 1.7 × 0.85 mm, that consists almost entirely of Åk-rich (45–65 mol%) melilite. Within the palisade body are two grains of perovskite with extremely Nb-rich (~4–8 wt% Nb2O5) cores and rims of typical composition. All phases in this inclusion have chondrite-normalized REE patterns that are consistent with crystal/melt partitioning superimposed upon a bulk modified Group II pattern. We suggest that TS2 had an anomalous cooling history and favor the following model for the formation of TS2. Precursors having a bulk modified Group II pattern melted. Rapid growth of large, dendritic, nonstoichiometric melilite crystals occurred. The melilite trapped pockets of melt and incorporated excess spinel components and TiO2. Bubbles formed in the residual melt. As crystallization slowed, coarse spinel grew. Some spinel grains collected against bubbles, forming spherical shells, and others formed clumps and chains. Relatively Åk-rich melilite crystallized from the residual melt between dendritic melilite crystals and from melt trapped in pockets and between arms of dendrites, and incorporated the clumps and chains of coarse spinel. Bubbles broke and filled with late-stage melt, their shapes preserved by their spinel shells. Slow cooling, or perhaps an episode of reheating, allowed the early melilite to become stoichiometric by exsolving fine grains of spinel, perovskite and fassaite, and allowed the melilite to form smooth grain boundaries. Dendritic crystals are indicative of rapid growth and the melilite crystals in TS2 appear to be dendritic. Coarse, dendritic melilite crystals have been grown from Type B inclusion melts cooled at ~50–100 °C/h. If those results are applicable to Type A inclusions, we can make the first estimate of the cooling rate of a Type A inclusion, and it is outside the range (2–50 °C/h) generally inferred for Type B inclusions. The rapid cooling inferred here may be part of an anomalous thermal history for TS2, or it may be representative of part of a normal thermal history common to Types A and B that involved rapid cooling early (at high temperatures) as inferred for TS2, and slower cooling later (at lower temperatures), as inferred for Type B inclusions. We prefer the former explanation; otherwise, the unusual features of TS2 that are reported here would be common in Type A inclusions (which they are not).  相似文献   

16.
Abstract— Metal nodules are one of the major textural components of Kaidun sample #01.3.06 EH3-4. In terms of structure, the nodules are of three types: (1) globular, (2) zoned with a massive core and globular mantle, and (3) nodules with no internal structure. The size and composition of the globules in the nodules and grains of metal of the matrix are almost identical: no greater than 20 μm and Ni, 5.95; Si, 3.33 wt%. The nodules contain small (usually <5 μm) inclusions of SiO2; albitic glass; enstatite; roedderite; and a mixture of SiO2 and Na2S2. This is the first reported occurrence of a simple sulfide of an alkaline metal in nature. The formation of the inclusions appears to be related to condensation of material onto the surfaces of metal grains. The nodules appear to have formed by aggregation of separate grains (globules) of metal, with conservation of condensates on the grain surfaces as inclusions. The inclusions probably condensed over a significant temperature range from 1400 to 600 K. The aggregation of metal grains and formation of the nodules probably occurred simultaneously with condensation.  相似文献   

17.
Abstract— Chondrule D8n in LL3.0 Semarkona is a porphyritic olivine (PO) chondrule, 1300 times 1900 μm in size, with a complicated thermal history. The oldest recognizable portion of D8n is a moderately high‐FeO, PO chondrule that is modeled as having become enmeshed in a dust ball containing a small, intact, low‐FeO porphyritic chondrule and fine‐grained material consisting of forsterite, kamacite, troilite, and possibly reduced C. The final chondrule melting event may have been a heat pulse that preferentially melted the low‐FeO material and produced a low‐FeO, opaque‐rich, exterior region, 45–140 μm in thickness, around the original chondrule. At one end of the exterior region, a kamacite‐ and troilite‐rich lump 960 μm in length formed. During the final melting event, the coarse, moderately ferroan olivine phenocrysts within the original chondrule appear to have been partly resorbed (These relict phenocrysts have the highest concentrations of FeO, MnO, and Cr2O3—7.5, 0.20, and 0.61 wt%, respectively—in D8n.). Narrow olivine overgrowths crystallized around the phenocrysts following final chondrule melting; their compositions seem to reflect mixing between melt derived from the exterior region and the resorbed margins of the phenocrysts. During the melting event, FeO in the relict phenocrysts was reduced, producing numerous small blebs of Ni‐poor metallic Fe along preexisting curvilinear fractures. The reduced olivine flanking the trails of metal blebs has lower FeO than the phenocrysts but virtually identical MnO and Cr2O3 contents. Subsequent parent‐body aqueous alteration in the exterior region of the chondrule formed pentlandite and abundant magnetite.  相似文献   

18.
19.
Abstract— Nierite (Si3N4) is a new mineral that has been found in perchloric acid-resistant residues of three ordinary chondrites (Adrar 003 [LL3.2], Inman [L3.4] and Tieschitz [H3.6]) and one enstatite chondrite (Indarch [EH4]). This mineral occurs as very small (~2 × 0.4 μm) lath-shaped grains, which have been characterised by transmission electron microscopy. The d-spacings of nierite are, within errors, comparable to those of synthetic α-Si3N4, which has trigonal symmetry (P31c, a = 0.7758 nm, c = 0.5623 nm, V = 0.2931 nm3 Z = 4). Energy-dispersive x-ray analyses confirm that nierite is a Si- and N-rich mineral. A few nierite crystals in the Indarch, Inman and Tieschitz residues are intergrown with whiskers of another nitride. Only two crystals of this additional nitride were found that were of sufficient size to give electron diffraction patterns uncontaminated by nierite reflections. The d-spacings of this second nitride are comparable to those of β-Si3N4, the hexagonal polymorph of synthetic Si3N4. The majority of nierite crystals in Indarch are interpreted to have formed by exsolution of Si and N from kamacite, perryite and schreibersite during parent-body metamorphism. Some grains have evidence for two discrete episodes of nierite crystallization. The origin of nierite in Adrar 003, Inman and Tieschitz is not known, but formation during exsolution is again possible. The petrographic relationships between nierite and β-Si3N4 in Indarch, Inman and Tieschitz suggests that the β-Si3N4 whiskers predated nierite and acted as a seed on which nierite crystals later nucleated. The nierite/β-Si3N4 ratio in ordinary chondrites is controlled by their metamorphic grade and possibly also their oxidation state.  相似文献   

20.
Edwin S. Barker 《Icarus》1975,25(2):268-281
The Venus water vapor line at 8197.71 Å has been monitored at several positions on the disk of Venus and at phase angles between 21° and 162°. Variations in the abundance have been found with spatial location, phase angle and time. During the 1972–1974 period, the total two-way absorption has varied from less than 1 to 77 μm of water vapor. The dependence on phase angle indicates 20 to 50 μm over the disk between 30° and 110° and small, but detectable amounts present during the rest of the observations. The spatial distribution with respect to the intensity equator is uniform with no location on the disk having systematically a higher or lower abundance. Comparisons made between the water vapor abundandances and the CO2 abundances determined from near-simultaneous observations of CO2 bands at the same positions on the disk of Venus show no correlation for the majority of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号