首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

2.
White, pale-yellow and brown deposits occur on surfaces of fragments of the Norton County enstatite achondrite. X-ray powder analysis of these materials indicates that they consist of several calcium-bearing minerals: portlandite [Ca(OH)2], vaterite (CaCO3, hexagonal), calcite (CaCO3, trigonal) and bassanite (CaSO4-1/2 H2O). We suggest that these minerals formed by weathering of oldhamite (CaS), which we found to occur in Norton County. The occurrence of portlandite suggests that at low temperatures and in the terrestrial environment, hydrolysis of oldhamite is the most important first step in the weathering sequence. Subsequent carbonation of portlandite is thought to produce vaterite, and vaterite in turn might transform into calcite. Thus, we suggest a weathering sequence in the terrestrial environment of oldhamite portlandite vaterite calcite. The mineral bassanite is clearly also a terrestrial weathering product but its precise mode of origïn is somewhat uncertain: in the system CaSO4-H2O, bassanite forms from gypsum at about 100 °C (an unlikely high T for the weathering environment of Norton County).  相似文献   

3.
Abstract— X-ray microdiffraction measurements based on the Kossel effect have been used for orientation determinations of rhabdite (i.e., small prismatic schreibersite crystals) with respect to the kamacite matrix. For that purpose, polished specimens of the Toluca meteorite have been analyzed after surface etching. Kossel patterns of kamacite and rhabdite have been recorded and simulated. As the law of intergrowth for idiomorphic rhabdite crystals, we confirmed the relations: In comparison with typical line widths, the Kossel lines of kamacite are distinctly broadened. This is found for the meteorite Toluca and a for a second sample, the meteorite Morasko. This behaviour is probably connected with a high dislocation density, as shown by transmission electron microscope investigations.  相似文献   

4.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

5.
Abstract— Shock metamorphosed quartz grains have been discovered in a drill core from the central peak of the Late Jurassic, marine Mjølnir structure; this finding further corroborates the impact origin of Mjølnir. The intersected strata represent the Upper Jurassic Hekkingen Formation and underlying Jurassic and Upper Triassic formations. The appearance, orientation, and origin of shock features in quartz grains and their stratigraphic distribution within the core units have been studied by optical and transmission electron microscopy. The quartz grains contain planar fractures (PFs), planar deformation features (PDFs), and mechanical Brazil twins. The formation of PFs is the predominant shock effect and is attributed to the large impedance differences between the water‐rich pores and constituent minerals in target sediments. This situation may have strengthened tensional/extensional and shear movements during shock compression and decompression. The combination of various shock effects indicates possible shock pressures between 5 and at least 20 GPa for three core units with a total thickness of 86 m (from 74.00 m to 171.09 m core depth). Crater‐fill material from the lower part of the core typically shows the least pressures, whereas the uppermost part of the allochthonous crater deposits displays the highest pressures. The orientations of PFs in studied quartz grains seem to become more diverse as the pressure rises from predominantly (0001) PFs to a combination of (0001), , and orientations. However, the lack of experimental data on porous sedimentary rocks does not allow us to further constrain the shock conditions on the basis of PF orientations.  相似文献   

6.
Abstract— Magmatic iron meteorites are commonly thought to have formed by fractional crystallization of the metallic cores of asteroid‐sized bodies. As fractional crystallization proceeds, light elements such as P and S become enriched in the molten portion of the core. The light element content of the metallic liquid influences the partitioning behavior of trace elements and may cause liquid immiscibility to occur. The elemental trends observed in magmatic iron meteorites may have been affected by both of these processes. We have examined experimentally the effect of P on the solid‐metal‐liquid‐metal partitioning behavior of Ag and Pd, Re and Os, two element pairs used to date iron meteorite processes. Phosphorus has no effect on the partition coefficient of either Ag or Pd, which are incompatible and identical within experimental error. Compatible Re and Os also have identical partitioning behavior, within experimental error, and show increasing compatibility in the solid metal with increasing P content of the metallic liquid. Including the effects of both S and P on the partitioning behavior of Re and Os, simple fractional crystallization calculations can reproduce the large variation of Re and Os concentrations observed in four magmatic iron meteorite groups but have difficulty matching the later crystallizing portions of the trends. We have also conducted experiments with three phases—solid metal and two immiscible metallic liquids—to determine the location of the liquid immiscibility field near conditions thought to be relevant to magmatic iron meteorites. Our results show a significantly smaller liquid immiscibility field as compared to the previously published Fe‐P‐S phase diagram. Our revised phase diagram suggests that liquid immiscibility was encountered during the crystallization of asteroidal cores, but much later during the crystallization process than predicted by the previously published diagram.  相似文献   

7.
Abstract– Pd and Ag partitioning between liquid Fe metallic sulfide and liquid silicate under plausible magma ocean conditions constrains potential core 107Ag content and the origin of observed Pd and Ag mantle abundances. DPdmetallic sulfide/silicate (element concentration in metallic liquid/concentration in silicate liquid) in our experiments is insensitive to S content and temperature, but increases with total Pd content. DPdmetallic sulfide/silicate at low Pd concentration ranges from approximately 150–650. Metallic sulfide Pd content and silicate Pd content anticorrelate in our study. A curved silicate saturation surface in the Fe sulfide–silicate Pd ternary can explain both the metallic sulfide–silicate Pd anticorrelation and interstudy differences in DPdmetallic sulfide/silicate behavior. The size and shape of the curved silicate phase volume may respond to physical and chemical conditions, reducing the general applicability of D calculations. Ag becomes decreasingly siderophile as S increases: DAgmetallic sulfide/silicate decreases from 144 at 0 wt% S to 2.5 at 28 wt% S added to the starting metal sulfide liquid. Model calculations indicate that 1% core material incorporated into the Hawai’ian plume would yield a 107Ag signature on the surface smaller than detectable by current analytical techniques. Observed Pd and Ag mantle depletions relative to bulk Earth are consistent with depletions calculated with the data from this study for a magma ocean scenario without additional accretionary input after core formation.  相似文献   

8.
Abstract— An analytical transmission electron microscopy (ATEM) study was undertaken in order to better understand the formation conditions of dusty olivines (i.e., olivines containing abundant tiny inclusions of Fe‐Ni metal) in primitive meteorites. Dusty olivines from type I chondrules in the Bishunpur chondrite (LL3.1) and from synthetic samples obtained by reduction of San Carlos olivines were examined. In both natural and experimental samples, micron size metal blebs observed in the dusty region often show preferential alignments along crystallographic directions of the olivine grains, have low Ni contents (typically <2 wt%), and are frequently surrounded by a silica‐rich glass layer. These features suggest that dusty olivines are formed by a sub‐solidus reduction of initially fayalitic olivines according to the following reaction: Some volatilization of SiOgas may account for the apparent excess of metal relative to silica‐rich glass observed in both experimental and natural samples. Comparison with experimentally produced dusty olivines suggests that time scales of the order of minutes usually inferred for chondrule formation are also adequate for the formation of dusty olivines. These observations are in agreement with the hypothesis that at least part of the metal phase in chondrites originated from reduction during chondrule formation.  相似文献   

9.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

10.
Abstract— Experimental solid metal‐liquid metal partition coefficients have been used to model the crystallization of magmatic iron meteorites and understand the evolution of asteroid cores. However, the majority of the partitioning experiments have been conducted with trace elements doped at levels that are orders of magnitude higher than measured in iron meteorites. Concern about Henry's Law and the unnatural doping levels have been cited as one reason that two recent iron meteorite studies have dismissed the experimental partition coefficients in their modeling. Using laser ablation ICP‐MS analysis, this study reports experimentally determined solid metal‐liquid metal trace element partition coefficients from runs doped down to the levels occurring in iron meteorites. The analyses for 12 trace elements (As, Co, Cr, Cu, Ga, Ge, Ir, Os, Pd, Pt, Re, and W) show no deviations from Henry's Law, and these results support decades of experimental work in which the partition coefficients were assumed to be independent of trace element concentration. Further, since our experiments are doped with natural levels of trace elements, the partitioning results are directly applicable to iron meteorites and should be used when modeling their crystallization. In contrast, our new Ag data are inconsistent with previous studies, suggesting the high Ag‐content in previous studies may have influenced the measured Ag partitioning behavior.  相似文献   

11.
Abstract The 9 km diameter Red Wing Creek structure, North Dakota, is located within the oil-rich Williston Basin at 47°36′N and 103°33′W. Earlier geophysical studies indicated that this subsurface structure has a central uplift, surrounded by an annular crater moat, and a raised rim. Breccias were encountered during drilling between ~2000 and 2800 m depth in the central uplift area, and the presence of shatter cone fragments in drill core samples was suggested to indicate an impact origin of the Red Wing Creek structure. We studied the petrographic and geochemical characteristics of samples of well cuttings from two boreholes at the center of the structure: the True Oil 22–27 Burlington Northern and True Oil 11–27 Burlington Northern wells. We found planar deformation features (PDFs) in quartz with up to three sets of different crystallographic orientations in sandstone- and siltstone-dominated samples from the True Oil 11–27 borehole. U-stage measurements of the crystallographic orientations of the PDFs showed the occurrence of the shock-characteristic (0001), and orientations, with a dominance of (0001) and orientations. The relative frequencies of the orientations indicate a shock pressure of at least 12–20 GPa. These results provide unambiguous evidence for shock metamorphism at Red Wing Creek and confirm that the structure was formed by impact.  相似文献   

12.
Abstract– Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe‐Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1 MPa experiments with two coexisting immiscible metallic liquids in the Fe‐S‐Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si‐free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite‐rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.  相似文献   

13.
Abstract— ‐Iron meteorites exhibit a large range in Ni concentrations, from only 4% to nearly 60%. Most previous experiments aimed at understanding the crystallization of iron meteorites have been conducted in systems with about 10% Ni or less. We performed solid metal/liquid metal experiments to determine the effect of Ni on partition coefficients for 20 trace elements pertinent to iron meteorites. Experiments were conducted in both the end‐member Ni‐S system as well as in the Fe‐Ni‐S system with intermediate Ni compositions applicable to high‐Ni iron meteorites. The Ni content of the system affects solid metal/liquid metal partitioning behavior. For a given S concentration, partition coefficients in the Ni‐S system can be over an order of magnitude larger than in the Fe‐S system. However, for compositions relevant to even the most Ni‐rich iron meteorites, the effect of Ni on partitioning behavior is minor, amounting to less than a factor of two for the majority of trace elements studied. Any effect of Ni also appears minor when it is compared to the large influence S has on element partitioning behavior. Thus, we conclude that in the presence of an evolving S‐bearing metallic melt, crystallization models can safely neglect effects from Ni when considering the full range of iron meteorite compositions.  相似文献   

14.
Abstract— Many solar system processes involve a metallic liquid, and the composition of the metallic liquid, such as the liquid's concentrations of S, P, and C, will influence the partitioning of elements during such processes. We present a method for parameterizing solid metal‐liquid metal partition coefficients for siderophile (metal‐loving) elements as a function of the metallic liquid composition. Our parameterization method is based on an older theory of Jones and Malvin (1990), which stated that the metallic liquid is composed of metal and non‐metal‐bearing domains, and the domains are the dominant influence on the partitioning behavior. By revising the means by which the metal domains are calculated, our revised parameterization method is able to match experimental partitioning data from the Fe‐Ni‐S, Fe‐Ni‐P, Fe‐Ni‐S‐P, and Fe‐Ni‐C systems. Mathematical expressions were derived for the solid metal‐liquid metal partitioning of 13 siderophile elements. Elements that are chalcophile (S‐loving), P‐loving, or C‐loving prefer the non‐metal‐bearing domains in the metallic liquid and, consequently, aren't fit by the parameterization method presented here. Possible applications for our parameterization method include modeling the crystallization of iron meteorites, planetary differentiation, and the solidification of Earth's inner core.  相似文献   

15.
Experimental trace element partitioning values are often used to model the chemical evolution of metallic phases in meteorites, but limited experimental data were previously available to constrain the partitioning behavior in the basic Fe‐Ni system. In this study, we conducted experiments that produced equilibrium solid metal and liquid metal phases in the Fe‐Ni system and measured the partition coefficients of 25 elements. The results are in good agreement with values modeled from IVB iron meteorites and with the limited previous experimental data. Additional experiments with low levels of S and P were also conducted to help constrain the partitioning behaviors of elements as a function of these light elements. The new experimental results were used to derive a set of parameterization values for element solid metal–liquid metal partitioning behavior in the Fe‐Ni‐S, Fe‐Ni‐P, and Fe‐Ni‐C ternary systems at 0.1 MPa. The new parameterizations require that the partitioning behaviors in the light‐element–free Fe‐Ni system are those determined experimentally by this study, in contrast to previous parameterizations that allowed this value to be determined as a best‐fit parameter. These new parameterizations, with self‐consistent values for partitioning in the endmember Fe‐Ni system, provide a valuable resource for future studies that model the chemical evolution of metallic phases in meteorites.  相似文献   

16.
Abstract The crystallography and crystal chemistry of a new calcium-titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 ± 0.002 nm and c = 0.492 ± 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)UNK | (001)mel and <10T0>UNK | <100>mel. If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3ml or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3–1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti-free analog with a formula of Ca3Al2Si4O14 synthesized by Paque et al. (1994) is thought to be related structurally but with the octahedral site being occupied by Al, that is   相似文献   

17.
Crystal/liquid partition coefficients for Cr, V, Mn, and Fe have been determined experimentally between olivine, orthopyroxene, clinopyroxene and silicate melt possesing the composition of a primitive lunar green glass, at oxygen fugacities appropriate to the lunar interior. These species all behave essentially as compatible elements and possess crystal/liquid partition coefficients mostly between 0.3 and 0.9. Partition coefficients for Cr, V, and Mn are generally similar to those of Fe. This implies that crystal/liquid fractionation processes in the lunar interior which do not involve the participation of spinels would not have been effective in fractionating MnO, CrO, and VO from FeO. The well-known constancy of FeO/MnO ratios in nearly all lunar rocks is a reflection of this behaviour. It is shown that comparably strong correlations between CrO-;FeO and VO-;FeO exist for lunar highland breccias and soils from all sites and that these correlations extend to primitive lunar volcanic glasses associated with mare volcanism, strongly suggesting that the CrO/FeO and VO/FeO ratios so derived are of global importance. The observed ratios characterizing differentiated regions of the Moon can be combined with the corresponding ratios for residual refractory portions of the Moon, using measured partition coefficients for Fe, Mg, Cr, V, and Mn between olivine, orthopyroxene and liquid. Bulk Moon abundances for Cr and V have been calculated for a range of reasonable assumptions concerning the petrogenetic relationships between differentiated portions of the Moon and complementary refractory residua consisting of olivine and orthopyroxene mineralogies. Because of the small differences in crystal liquid partition coefficients between FeO, CrO, and VO, these estimates are insensitive to large variations in the models. The bulk Moon is accordingly estimated to contain 2190–2463 ppm Cr and 79–95 ppm V. These values are very similar to the Cr and V contents of the Earth's mantle, estimated as 3010 ppm Cr and 81 ppm V by Sun (1982). The geochemical implications of these similarities are discussed.  相似文献   

18.
Abstract— We have made aluminum‐magnesium isotopic measurements on 4 melilite‐bearing calcium‐aluminum‐rich inclusions (CAIs), 1 plagioclase‐olivine inclusion (POI), and 2 ferromagnesian chondrules from the Ningqiang carbonaceous chondrite. All of the CAIs measured contain clear evidence for radiogenic 26Mg* from the decay of 26Al ( = 1.05 Ma). Although the low Al/Mg ratios of the melilites introduce large uncertainties, the inferred initial 26Al/27Al ratios for the CAIs are generally consistent with the value of 5 times 10?5. There is clear evidence of 26Al* in one POI and two chondrules, but with considerable uncertainties in the value of (26Al/27Al)0. The (26Al/27Al)0 ratios for the POI and the chondrules are 0.3–0.6 times 10?5, roughly an order of magnitude lower than the canonical value. Ningqiang shows very little evidence of metamorphism as a bulk object and the (26Al/27Al)0 ratios in its refractory inclusions and chondrules are consistent with those found in other unmetamorphosed chondrites of several different classes. Our observations and those of other workers support the view that 26Al was widely and approximately homogeneously distributed throughout the condensed matter of the solar system. The difference in (26Al/27Al)0 between CAIs and less refractory materials seems reasonably interpreted in terms of a ~2 million year delay between the formation of CAIs and the onset of formation of less refractory objects. The POI shows clear differences in 25Mg/24Mg between its constituent spinels and olivine, which confirms that they are partially reprocessed material from different sources that were rapidly quenched.  相似文献   

19.
Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.  相似文献   

20.
Using the 3-dimensional ASH code, we have studied numerically the instabilities that occur in stellar radiation zones in presence of large-scale magnetic fields, rotation and large-scale shear. We confirm that some configurations are linearly unstable, as predicted by Tayler and collaborators, and we determine the saturation level of the instability. We find that rotation modifies the peak of the most unstable wave number of the poloidal instability but not its growth rate as much as in the case of the m = 1 toroidal instability for which it is changed to σ = /Ω. Further in the case with rotation and shear, we found no sign of the dynamo mechanism suggested recently by Spruit even though we possess the essential ingredients (Tayler's m = 1 instability and a large scale shear) supposedly at work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号