首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

2.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

3.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

4.
The rectilinear equal-mass and unequal-mass three-body problems are considered. The first part of the paper is a review that covers the following items: regularization of the equations of motion, integrable cases, triple collisions and their vicinities, escapes, periodic orbits and their stability, chaos and regularity of motions. The second part contains the results of our numerical simulations in this problem. A classification of orbits in correspondence with the following evolution scenarios is suggested: ejections, escapes, conditional escapes (long ejections), periodic orbits, quasi-stable long-lived systems in the vicinity of stable periodic orbits, and triple collisions. Homothetic solutions ending by triple collisions and their dependence on initial parameters are found. We study how the ejection length changes in response to the variation of the triple approach parameters. Regions of initial conditions are outlined in which escapes occur after a definite number of triple approaches or a definite time. In the vicinity of a stable Schubart periodic orbit, we reveal a region of initial parameters that corresponds to trajectories with finite motions. The regular and chaotic structure of the manifold of orbits is mostly defined by this periodic orbit. We have studied the phase space structure via Poincaré sections. Using these sections and symbolic dynamics, we study the fine structure of the region of initial conditions, in particular the chaotic scattering region.  相似文献   

5.
This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun–Earth, Earth–Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.  相似文献   

6.
Cosmogonical theories as well as recent observations allow us to expect the existence of planets around many stars other than the Sun. On an other hand, double and multiple star systems are established to be more numerous than single stars (such as the Sun), at least in the solar neighborhood. We are then faced to the following dynamical problem: assuming that planets can form in a binary early environment (I do not deal here with), does long-term stability for planetary orbits exist in double star systems.Although preliminary studies were rather pessimistic about the possibility of existence of stable planetary orbits in double or multiple star systems, modern computation have shown that many such stable orbits do exist (but possible chaotic behavior), either around the binary as a whole (P-type) or around one component of the binary (S-type), this latter being explored here.The dynamical model is the elliptic plane restricted three-body problem; the phase space of initial conditions is systematically explored, and limits for stability have been established. Stable S-type planetary orbits are found up to distance of their "sun" of the order of half the periastron distance of the binary; moreover, among these stable orbits, nearly-circular ones exist up to distance of their "sun" of the order of one quarter the periastron distance of the binary; finally, among the nearly-circular stable orbits, several stay inside the "habitable zone", at least for two nearby binaries which components are nearly of solar type.Nevertheless, we know that chaos may destroy this stability after a long time (sometimes several millions years). It is therefore important to compute indicators of chaos for these stable planetary orbits to investigate their actual very long-term stability. Here we give an example of such a computation for more than a billion years.  相似文献   

7.
We consider the motions of particles in the one-dimensional Newtonian three-body problem as a function of initial values. Using a mapping of orbits to symbol sequences we locate the initial values leading to triple collisions. These turn out to form curves which give clear structure to the region in which the motions depend sensitively on initial conditions. In addition to finding the triple collision orbits we also locate orbits which end up to a triple collision in both directions of time, that is, orbits which are finite both in space and time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We have applied the method of Liapounov Characteristic Numbers (LCN) to the planar restricted three-body problem with various mass ratios μ and Jacobi constantsC, for various cases of satellite and asteroidal motion. Some results on the LCN's for both ordinary and regularized coordinate systems are obtained. The results indicate that there exists a maximum valueC* ofC, depending on μ, such that all the LCN's are zero within computational accuracy whenC>C*. The meaning of this is that all orbits whose initial conditions are located in the region for whichC>C* are effectively stable.  相似文献   

9.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

10.
对一类具非零角动量的平面三体系统研究其三体构形对系统演化的影响.根据Agekian和Anosova提出的构形图(homology map),三体系统按其构形特点分属于4个不同的区域.通过数值计算,考察了初始位置位于不同区域中的构形颗粒(homolgydrop)的演化,并就有关性质与Heinamaki等人研究的角动量为零的三体系统作了比较指出,构形颗粒的组成系统全部发生解体的时间在L区域最早,H区域最晚,这与零角动量系统不同.还对4个区域的三体系统的寿命进行了统计分析,得到了各区域中末解体的系统数随时间指数衰减的函数关系.  相似文献   

11.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

12.
We present special generating plane orbits, the vertical-critical orbits, of the coplanar general three-body problem. These are determined numerically for various values of m3, for the entire range of the mass ratio of the two primaries. The vertical-critical orbits are necessary in order to specify the vertically stable segments of the families of plane periodic orbits, and they are also the starting points of the families of the simplest possible three-dimensional periodic orbits, namely the simple and double periodic. The initial conditions of the vertical-critical periodic orbits of the basic families l, m, i, h, b and c and their stability parameters are determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Most extrasolar planets discovered to date are more massive than Jupiter, in surprisingly small orbits (semimajor axes less than 3 AU). Many of these have significant orbital eccentricities. Such orbits may be the product of dynamical interactions in multiplanet systems. We examine outcomes of such evolution in systems of three Jupiter-mass planets around a solar-mass star by integration of their orbits in three dimensions. Such systems are unstable for a broad range of initial conditions, with mutual perturbations leading to crossing orbits and close encounters. The time scale for instability to develop depends on the initial orbital spacing; some configurations become chaotic after delays exceeding 108 y. The most common outcome of gravitational scattering by close encounters is hyperbolic ejection of one planet. Of the two survivors, one is moved closer to the star and the other is left in a distant orbit; for systems with equal-mass planets, there is no correlation between initial and final orbital positions. Both survivors may have significant eccentricities, and the mutual inclination of their orbits can be large. The inner survivor's semimajor axis is usually about half that of the innermost starting orbit. Gravitational scattering alone cannot produce the observed excess of “hot Jupiters” in close circular orbits. However, those scattered planets with large eccentricities and small periastron distances may become circularized if tidal dissipation is effective. Most stars with a massive planet in an eccentric orbit should have at least one additional planet of comparable mass in a more distant orbit.  相似文献   

14.
The stability of the motion of a hypothetical planet in the binary system ?? Cen A?CB has been investigated. The analysis has been performed within the framework of a planar (restricted and full) three-body problem for the case of prograde orbits. Based on a representative set of initial data, we have obtained the Lyapunov spectra of the motion of a triple system with a single planet. Chaotic domains have been identified in the pericenter distance-eccentricity plane of initial conditions for the planet through a statistical analysis of the data obtained. We have studied the correspondence of these chaotic domains to the domains of initial conditions that lead to the planet??s encounter with one of the binary??s stars or to the escape of the planet from the system. We show that the stability criterion based on the maximum Lyapunov exponent gives a more clear-cut boundary of the instability domains than does the encounterescape criterion at the same integration time. The typical Lyapunov time of chaotic motion is ??500 yr for unstable outer orbits and ??60 yr for unstable inner ones. The domain of chaos expands significantly as the initial orbital eccentricity of the planet increases. The chaos-order boundary has a fractal structure due to the presence of orbital resonances.  相似文献   

15.
The famous three-body problem can be traced back to Newton in 1687, but quite few families of periodic orbits were found in 300 years thereafter. In this paper, we propose an effective approach and roadmap to numerically gain planar periodic orbits of three-body systems with arbitrary masses by means of machine learning based on an artificial neural network (ANN) model. Given any a known periodic orbit as a starting point, this approach can provide more and more periodic orbits (of the same family name) with variable masses, while the mass domain having periodic orbits becomes larger and larger, and the ANN model becomes wiser and wiser. Finally we have an ANN model trained by means of all obtained periodic orbits of the same family, which provides a convenient way to give accurate enough predictions of periodic orbits with arbitrary masses for physicists and astronomers. It suggests that the high-performance computer and artificial intelligence (including machine learning) should be the key to gain periodic orbits of the famous three-body problem.  相似文献   

16.
We have shown, in previous publications, that stable chaos is associated with medium/high-order mean motion resonances with Jupiter, for which there exist no resonant periodic orbits in the framework of the elliptic restricted three-body problem. This topological “defect” results in the absence of the most efficient mechanism of eccentricity transport (i.e., large-amplitude modulation on a short time scale) in three-body models. Thus, chaotic diffusion of the orbital elements can be quite slow, while there can also exist a nonnegligible set of chaotic orbits which are semiconfined (stable chaos) by “quasi-barriers” in the phase space. In the present paper we extend our study to all mean motion resonances of order q≤9 in the inner main belt (1.9-3.3 AU) and q≤7 in the outer belt (3.3-3.9 AU). We find that, out of the 34 resonances studied, only 8 possess resonant periodic orbits that are continued from the circular to the elliptic three-body problem (regular families), namely, the 2/1, 3/1, 4/1, and 5/2 in the inner belt and the 7/4, 5/3, 11/7, and 3/2 in the outer belt. Numerical results indicate that the 7/3 resonance also carries periodic orbits but, unlike the aforementioned resonances, 7/3-periodic orbits belong to an irregular family. Note that the five inner-belt resonances that carry periodic orbits correspond to the location of the main Kirkwood gaps, while the three outer-belt resonances correspond to gaps in the distribution of outer-belt asteroids noted by Holman and Murray (1996, Astron. J.112, 1278-1293), except for the 3/2 case where the Hildas reside. Fast, intermittent eccentricity increase is found in resonances possessing periodic orbits. In the remaining resonances the time-averaged elements of chaotic orbits are, in general, quite stable, at least for times t∼250 Myr. This slow diffusion picture does not change qualitatively, even if more perturbing planets are included in the model.  相似文献   

17.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

18.
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh’s critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.  相似文献   

19.
We consider the scattering motion of the planar restricted three-body problem with two equal masses on a circular orbit. Using the methods of chaotic scattering we present results on the structure of scattering functions. Their connection with primitive periodic orbits and the underlying chaotic saddle are studied. Numerical evidence is presented which suggests that in some intervals of the Jacobi integral the system is hyperbolic. The Smale horseshoe found there is built from a countable infinite number of primitive periodic orbits, where the parabolic orbits play a fundamental role.  相似文献   

20.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号