首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochronological data (~1800 dates) have been analyzed by the probabilistic statistical analysis of samplings of different subalkaline and alkaline rocks through the whole of geological time. The distribution of five groups of subalkaline and alkaline rocks within the Late Archean-Phanerozoic are strictly controlled by mantle cycles, which were distinguished from data on the upper mantle magmatic rocks. Since high alkali rocks are plume related, their universal participation in each of the revealed mantle cycles emphasizes the importance of this magmatism in the evolution of the crustal-mantle system. The initial Sr and Nd isotope ratios are subdivided into two groups: with mantle and crustal signatures. Mantle isotope ratios are typically observed throughout the entire geological interval of dated rocks, while the role of crustal isotope signatures increases from the Archean to Phanerozoic, reflecting the increasing the role of fluids and crustal rocks in the magmatic processes during the generation of mantle magmas and their consolidation in the crust. Since alkaline magmatic sources are formed during mantle metasomatism, which enriched the magma generation zones in incompatible elements, the repeated occurrence of this process in separate mantle zones may have lead to the anomalous accumulation of these elements, which should be reflected in the alkaline magmas.  相似文献   

2.
重要的地球化学"信息库"   总被引:5,自引:3,他引:2  
肖益林  黄建  刘磊  李东永 《岩石学报》2011,27(2):398-416
金红石是各种岩石特别是地壳组成岩石中重要的副矿物,它在成岩、风化和各种不同程度的变质过程中均能保持极大的稳定性。同时,除主要成分TiO2外,金红石还含有为数众多的其它微量元素(例如: Nb, Ta, Zr, Hf, Sn, Mo, Sb, Cr, V, W, U和Pb等),这些微量元素的变化特征,对于包含金红石的主体岩石所经历的地质过程具有非常重要的指示意义。近二十年特别是近十年来,金红石已成为地球化学研究领域的一个热点。对各种元素和同位素在金红石中变化特征的调查,被广泛地应用于对各种地质过程的了解,其研究应用的范围涉及到了整体地球的元素平衡、大陆地壳的形成机制、含金红石岩石的形成源区、变质岩石的温压条件和形成时代的研究等多个方面,同时其所包含的各种同位素体系也被广泛用于各种地质过程的示踪。本文综合近年来金红石研究的最新进展,系统表述了金红石作为一个近年来发展起来的重要地质信息储库,在地球化学研究中各个方面的应用。  相似文献   

3.
Shidiya Phosphorites, Southeast Jordan, provide a typical example of natural geological materials depleted with potentially toxic elements as compared to other phosphate deposits from all over the World. Nevertheless, the environmental concern as to whether processing and fertilizer production might affect the potentially toxic element concentrations in these phosphates positively or negatively has to be avoided. In order to do so, this study was designed to provide information on the redistribution pathways of the measured toxic elements during the several processing steps, including crushing, screening, washing, flotation and drying processes. It aimed also at providing information on the redistribution pathways during the different phosphate fertilizer production steps. The bioavailability of potentially toxic elements in acidic and alkaline environments has also been assessed.  相似文献   

4.
The basalt-hosted Wocan Hydrothermal Field (WHF), located on the NW slope of an axial volcanic ridge at a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge at a water depth of 2970–2990 m, and Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.  相似文献   

5.
The primary fractionation process in iron meteorites is that responsible for the distribution of elements between the groups, most notably Ga and Ge, which show concentration ranges of 103 and 104 respectively. To investigate the cause of the primary fractionation, concentrations of 16 elements were converted to relative abundances by dividing the element/Ni ratio by the CI chondrite ratio. These abundances were plotted on logarithmic graphs with data for each group (except IB and IIICD) and each cluster of closely related anomalous irons averaged.Co, P, Au, As, Cu, Sb, Ge and Zn are positively correlated with Ga. For most groups (except IA, IC and IIAB) relative abundances of these elements tend to decrease from about 1 in approximately the order listed above. This is the expected order in which these elements will condense into Fe, Ni during equilibrium nebular condensation. Mean relative abundances of refractory elements in groups generally lie within a narrow range of 0.5–2, and are uncorrelated with Ga. Although the equilibrium model may be only a gross approximation, it suggests that most primary fractionation did occur during nebular condensation.The anomalous irons are essential for defining many of the primary fractionation trends. On several element-Ga graphs the displacements of the anomalous irons from the primary curves indicate that these irons experienced the same secondary fractionation process (probably fractional crystallization) that produced the trends within most groups. The anomalous irons appear to be samples from over 50 minor groups, which have similar histories to the 12 major groups.  相似文献   

6.
近十年来对锆石研究已从早期的U-Pb放射性同位素定年和锆石同位素分析,发展到大量研究锆石的微量元素。锆石微量元素不仅可以作为锆石Ti温度计估算岩浆温度,也可以用来识别锆石及其母岩的岩石类型和成因,区分岩浆熔体或者流体控制的岩浆作用、变质作用、成矿作用等深部作用过程。文中在归纳总结岩浆锆石、变质锆石、热液锆石、碎屑锆石等不同类型锆石的微量元素成分基础上,以青藏高原碰撞后超钾质岩石中产出的锆石为例,系统介绍了超钾质岩石中各类锆石的结构、年龄和微量元素特征,并应用于解释超钾质岩石成因、岩浆源区成分、岩浆演化和上部地壳物质的混染、下地壳加厚和高原隆升之间的关系。  相似文献   

7.
The first data on trace-element geochemistry, REEs included, of the Devonian clastic and volcanosedimentary complexes in the Magnitogorsk Megazone have been obtained with ICP-MS. The correlation links and the character of distribution indicate that many elements, including those readily passing into solutions during weathering, were transferred as mechanical suspensions. Therefore, minerals concentrating these elements were largely preserved, as also were the distribution and concentrations of elements inherent to the source rocks. Both accessory minerals (apatite, zircon, Ti-minerals, and magnetite) and rock-forming minerals (pyroxene, amphibole, biotite, serpentine, chlorite, and plagioclase) were found among mineral concentrators. Clay minerals also seem to have participated in the processes. The typical elements of various complexes were identified. The distribution of trace elements is correlated with the stratigraphic position of rocks and depends on the character of the petrographic provinces.  相似文献   

8.
A study has been conducted in the heavily populated coastal areas of the Puri district (Odisha, India) with the aim to: (1) identify the factors that influence the major ion composition and concentrations of trace elements in groundwater; (2) determine the spatial distribution of the water-quality parameters and how they vary on a seasonal basis. To do this, groundwater samples were collected from 60 shallow tube wells located along the Puri coast during the pre-monsoon and post-monsoon seasons. Based on their TDS content, 52% of the collected groundwater samples were identified as being brackish-to-saline and unsuitable for drinking purposes in both the pre- and post-monsoon seasons. Significant concentrations of trace elements including Ba, Br, F, Fe, Mn, and Sr were detected in most of the samples. Iron concentrations were found to be higher than the WHO drinking water guideline value (0.3 mg/l) in 92% of the samples irrespective of seasons. Elevated Mn concentrations were observed in 37% and 40% of samples during the pre-monsoon and post-monsoon seasons, respectively. In addition, fluoride concentrations in excess of the WHO limit (1.5 mg/l) were found in 15% of samples during the pre-monsoon and 23% of samples during the post-monsoon season. The concentrations of major and trace elements show wide spatial and minor temporal variations. Large spatial and limited temporal variations in Cl and Na concentrations along with considerable Br and Sr concentrations in groundwater suggest that saltwater intrusion is the dominant process controlling groundwater quality in the study area, although other processes including ion exchange, the precipitation and dissolution of minerals, microbial activity, and the weathering of aquifer material also play roles to some extent in determining the spatial and seasonal distribution of the major and trace elements in coastal groundwater. Grouping of various water-quality parameters related to these processes by principal component analysis and their linking to one cluster in the hierarchical cluster analysis further supports the view that these processes control the groundwater chemistry in the coastal aquifer.  相似文献   

9.
Regularities in the distribution of rare-earth and trace elements in organic matter depending on geological settings and geochemical processes are considered. The model of transformation of organic matter and redistribution of ore elements during oil generation and ore formation is discussed.  相似文献   

10.
This study is concerned with formation of minerals containing Li, Be, Cb, Ta, W, Bi, and other elements. The distribution of 35 accessory minerals was examined in biotite granite massifs occupying an area of 10 km2 . These minerals formed during the late magmatic stage and mainly during the subsequent metasomatic processes, such as rnuscovitization, early albitization, greisenization, late albitization, and microclinization. Tantalum and columbium mineralization is associated with rocks intensely altered by the processes of alkaline metasomatism and reflects differentiation of rare earth's mineralization in marginal granite massifs. Minerals containing Be, W, Bi, Sn, and Mo were deposited during the acidic stage of metasomatism. The subsequent alkaline stage of metasomatism resulted in leaching of these elements and their redeposition outside the massif. The paper is of interest as a guide in prospecting for tantalum and columbium in granitic intrusions.--E. A. Alexandrov.  相似文献   

11.
在矿床地质特征研究的基础上,对高松山金矿床赋矿围岩中代表性的粗安岩进行了锆石U-Pb同位素年龄测定和元素地球化学成分分析;实验结果揭示:(1)获得6组单颗粒锆石年龄,第一组为2 422~2 683 Ma,为残留锆石年龄;第二、三、四和五组分别为606~943 Ma、428~437 Ma、281~303 Ma和169~221 Ma,为捕获锆石年龄;第六组为121~129 Ma,代表火山作用过程形成的锆石年龄;(2)主量元素地球化学特征揭示该套火山岩为高钾钙碱性-钾玄岩系列岩石;(3)微量元素和REE指示岩石明显富集Rb、Ba、K等大离子亲石元素(LILE)和轻稀土元素(LREE),亏损Nb、Ta和Ti等高场强元素(HFSE)和重稀土元素(HREE)。结合相关成果,初步厘定该区可能存在古元古代—新太古代结晶基底或碎屑物,该期火山作用在古太平洋板块俯冲引发的岩石圈伸展和减薄环境下富集地幔部分熔融、岩浆上侵、喷发作用形成,岩浆在上升演化过程中受到早侏罗世中酸性侵入岩的混染,该次岩浆活动与东北地区早白垩世早期大规模火山喷发岩浆事件相吻合。  相似文献   

12.
The upper part of the Adediya Formation (Cambro-Ordivician) exposed in southwestern Sinai represents a very interesting succession. It contains mineralizations which are exceptionally rich in radioactive and rare earth elements as well as heavy metals. Field and several laboratory studies were carried out on this part of the Adediya Formation exposed in four stratigraphic sections distributed in a geographically wide area in southwestern Sinai.The radioactive mineralizations exist in sandstones, ironstone bodies and, to a much lesser extent, siltstones. Each of these rock types has a relatively wide range of textural characteristics. The recorded mineral assemblage consists of a large number of essential and accessory minerals some of which are radioactive and REE-bearing.The obtained field and laboratory data were implemented to determine the sedimentary history of the host rocks and the genesis of the mineral species which constitute the mineralizations. This included the identification of the types and effects of the various diagenetic processes and hydrothermal activity which led to the genesis of the recorded mineralizations. Also, the relative roles played by these post-depositional processes in determining the mineral, chemical and radioactive characteristics of the mineralizations and host rocks were assessed. These roles resulted in redistribution of the various elements especially the radioactive and rare earth elements as well as heavy metals during the epigenetic phase particularly by the action of supergene processes. A genetic model for the studied mineralizations is proposed.  相似文献   

13.
The intensity of the redistribution of trace elements in zircons significantly varies depending on the types of secondary processes affecting the magmatic rocks. The Neoarchean alkaline granites of the Keivy structure in the Kola Peninsula are employed as an illustrative example of differences in the variation dynamics of the proportions of certain elements (REE, Th, U, Hf, and others) with the transition from the magmatic to metamorphic crystallization of zircons during Proterozoic amphibolite-facies metamorphism over-printed onto the rocks. Changes are detected in the proportions of LREE and HREE, in the Ce4+/Ce3+ and Th/U ratios, and in other incompatible elements. The data obtained by geochemically comparing the redistribution of certain elements and their pairs in zircons during amphibolite-facies metamorphism and Phanerozoic hydrothermal alteration (literature data) are used to gain insight into the genesis of detrital Hadean zircons. Certain similarities and remarkable differences are detected in the effects of Hadean processes and Phanerozoic-Precambrian magmatism and secondary recrystallization on the behavior of chemical elements.  相似文献   

14.
化学风化作用中的稀土元素行为及其影响因素   总被引:22,自引:0,他引:22  
地表风化作用长期以来一直是地球和环境科学研究的焦点问题。风化作用中微量元素地球化学行为的研究不但有助于对一系列全球性问题的认识和理解,而且有助于许多与人类生存密切相关的环境问题的解决。系统总结了近年来国内外在风化作用中的稀土元素地球化学研究领域的主要内容和最新进展,着重介绍了风化壳中稀土元素的分布特征、Ce异常成因、稀土元素的赋存状态和迁移方式、影响稀土元素分布和循环的主要因素,以及风化作用稀土元素地球化学的主要研究方法。最后,分析指出有机质和微生物作用对稀土行为的影响是未来的重要研究方向。  相似文献   

15.
煤中微量元素富集的主要因素分析   总被引:20,自引:3,他引:17  
在对兖州矿区煤中微量元素成因分析及总结前人结论的基础上,将煤中微量元素富集因素划分为原生、次生和后生三个阶段,分别对每一个阶段影响微量元素富集的主要因素进行研究和分析。结果表明,煤在形成的过程中影响微量元素迁移、富集的因素很多,植物生长的种类、生长中水化学条件、泥炭沼泽形成中大气、海水的入侵、煤在煤化过程中岩浆热液的作用、煤与顶、底板岩石的物质交换作用等都影响着煤中微量元素富集。因此,煤中微量元素的形成、聚集是煤在形成的各个时期、各种地质因素综合影响的结果。   相似文献   

16.
Calcareous root tubes (CRTs) contain abundant information about palaeoenvironmental conditions and have been used for palaeoenvironmental studies in the desert hinterlands of arid regions. However, as subclasses of CRTs, calcareous sheaths and rhizocretions are formed by different processes, and it remains unclear whether these differences produce variations in the chemical element composition. Furthermore, it remains uncertain whether variations in chemical element concentrations amongst different subclasses of the CRTs can affect palaeoenvironmental reconstructions. In this study, we collected 54 CRT samples from the Tengger Desert of northwestern China. All samples were dated by accelerator mass spectrometry (AMS) 14C dating, and the chemical element composition and concentration differences of the two CRT subclasses were determined using X‐ray fluorescence spectrometry. The CRT samples were dated to the Holocene. The calcareous sheath and rhizocretion samples contained varying concentrations of the same chemical elements. The rhizocretions had high concentrations of mobile elements (Ca, Mg and Sr) and P, whereas the calcareous sheaths had high concentrations of stable elements, including Al, Si, Ti, Zr, Rb and Ba. These differences were due to the different formation processes of the two subclasses of CRTs. Moreover, the Sr/Ca and Mg/Ca ratios in the calcareous sheaths were higher than those in the rhizocretions from the same period, but these ratio differences had little effect on palaeo‐effective moisture reconstructions at the millennial scale during the Holocene. The reconstructions were not influenced by the various CRT subclasses. The Holocene millennial‐scale moisture changes in the Tengger Desert revealed by the Sr/Ca and Mg/Ca ratios showed that there was an arid period during the Early Holocene, a humid period during the Middle Holocene and a humid to arid period during the Late Holocene.  相似文献   

17.
《International Geology Review》2012,54(10):1253-1277
ABSTRACT

Seafloor subduction and subduction-zone metamorphism (SZM) are understood to be the very cause of both subduction-zone magmatism and mantle compositional heterogeneity. In this article, we compile geochemical data for blueschist and eclogite facies rocks from global palaeo-subduction-zones in the literature, including those from the Chinese Western Tianshan ultrahigh pressure (UHP) metamorphic belt. We synthesize our up-to-date understanding on how chemical elements behave and their controls during subduction-zone metamorphism. Although the compositional heterogeneity of metamorphic minerals from subducted rocks has been recently reported, we emphasize that the mineral compositional heterogeneity is controlled by elemental availability during mineral growth, which is affected by the protolith composition, the inherited composition of precursor minerals, and the competition with neighbouring growing minerals. In addition, given the likely effects of varying protolith compositions and metamorphic conditions on elemental behaviours, we classify meta-mafic rocks from global palaeo-subduction-zones with varying metamorphic conditions into groups in terms of their protolith compositions (i.e. ocean island basalt (OIB)-like, enriched mid-ocean ridge basalt (MORB)-like, normal [N]-MORB-like), and discuss geochemical behaviours of chemical elements within these co-genetic groups rather than simply accepting the conclusions in the literature. We also discuss the geochemical consequences of SZM with implications for chemical geodynamics, and propose with emphasis that: (1) the traditionally accepted ‘fluid flux induced-melting’ model for arc magmatism requires revision; and (2) the residual subducted ocean crust cannot be the major source material for OIB, although it can contribute to the deep mantle compositional heterogeneity. We also highlight some important questions and problems that need further investigations, e.g. complex subduction-zone geochemical processes, different contributions of seafloor subduction and resultant subduction of continental materials, and the representativeness of studied HP–UHP metamorphic rocks.  相似文献   

18.
Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock’s pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water–rock–microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.  相似文献   

19.
The integration of information which can be gained from accessory [i.e. age (t)] and rock‐forming minerals [i.e. temperature (T) and pressure (P)] requires a more profound understanding of the equilibration kinetics during metamorphic processes. This paper presents an approach comparing conventional P–T estimate from equilibrated assemblages of rock‐forming minerals with temperature data derived from yttrium‐garnet‐monazite (YGM) and yttrium‐garnet‐xenotime (YGX) geothermometry. Such a comparison provides an initial indication on differences between equilibration of major and trace elements. Regarding this purpose, two migmatites, two polycyclic and one monocyclic gneiss from the Central Alps (Switzerland, northern Italy) were investigated. While the polycyclic samples exhibit trace‐element equilibration between monazite and garnet grains assigned to the same metamorphic event, there are relics of monazite and garnet obviously surviving independent of their textural position. These observations suggest that surface processes dominate transport processes during equilibration of those samples. The monocyclic gneiss, on the contrary, displays rare isolated monazite with equilibration of all elements, despite comparably large transport distances. With a nearly linear crystal‐size distribution of the garnet grain population, growth kinetics, related to the major elements, were likely surface‐controlled in this sample. In contrast to these completely equilibrated examples, the migmatites indicate disequilibrium between garnet and monazite with a change in REE patterns on garnet transects. The cause for this disequilibrium may be related to a potential disequilibrium initiated by a changing bulk chemistry during melt segregation. While migmatite environments are expected to support high transport rates (i.e. high temperatures and melt presence), the evolution of equilibration in migmatites is additionaly related to change in chemistry. As a key finding, surface‐controlled equilibration kinetics seem to dominate transport‐controlled processes in the investigated samples. This may be decisive information towards the understanding of age data derived from monazite.  相似文献   

20.
Total suspended particulate samples (TSP) were collected and concentrations measured during seventeen months in the vicinity of a ceramic industrial area. A method of fractionating was applied to the samples in order to obtain two fractions corresponding to mineral particulate coming from dust emissions (Upper-F fraction) and to amorphous matter (carbon plus small amounts of S, Ca, Fe, etc) coming mainly from traffic and other combustion processes. Also for TSP samples several element concentrations were measured following two previous treatments: extraction of elements mainly associated with the soluble fraction of the samples (B, Fe, P, As, NO2–, NH4+, Cl, F) and acid digestion for trace metals and elements mainly associated with the non-soluble fractions of the samples (Fe, As, Cd, Ni, Pb, Zn Ca). Seasonal differences and the influence of meteorological parameters (temperature, relative humidity, pressure and wind conditions) on the air pollution levels, particles as well as ions, were studied.Results show different seasonal and weekly evolution for mineral and amorphous carbonaceous particles because of the different origins in dust emissions or combustion processes respectively, and the different physical properties such as size grain. Of the ions analyzed Fe, Ca and Zn were clearly associated to mineral phases and consequently related to dust emissions, and NO2–, NH4+, P, Cl were related to amorphous matter coming from combustion. Ni and Cd show lower levels than those reported as guideline values and the source is mainly related to the enrichment of these elements in clay materials. B and As content result in elevated concentrations, with the tendency to increase during cold months. The emission of these elements was associated with vaporization or volatilization during high temperature ceramic processes. The original gaseous state is influenced by temperature. In the winter the content for B and As is higher due to enhanced condensation of gas-phase boron onto particles, while in the summer the increase of air temperature results in elevated evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号