首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

2.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

3.
The adsorption and desorption behavior of selenite by processed Green River Formation oil shales were examined. The selenite adsorption data could be quantitatively described by both the Freundlich and Langmuir isotherms. However, greaterR 2 values were obtained for the Freundlich isotherms. Furthermore, selenite adsorption was not a function of the extraction process. The adsorption of selenite by the processed oil shales was irreversible. Upon dilution of the equilibrium systems, additional selenite removal from solution occurred. A thermochemical analysis of the adsorption and desorption equilibrium solutions indicated that the solutions were undersaturated with respect to a number of metal selenite solids. This indicates that precipitation processes are not influencing selenite behavior. However, not all selenite minerals were examined in the evaluation because of the lack of thermochemical data. An insufficient equilibration period for the adsorption study or the alteration of processed oil shale solids as a result of hydration reactions may also have hastened the additional removal of selenite during the desorption studies.  相似文献   

4.
The mycotoxin patulin is produced by the blue mould pathogen Penicillium expansum in rotting apples during postharvest storage. Patulin is toxic to a wide range of organisms, including humans, animals, fungi and bacteria. Wash water from apple packing and processing houses often harbours patulin and fungal spores, which can contaminate the environment. Ubiquitous epiphytic yeasts, such as Rhodosporidium kratochvilovae strain LS11 which is a biocontrol agent of P. expansum in apples, have the capacity to resist the toxicity of patulin and to biodegrade it. Two non-toxic products are formed. One is desoxypatulinic acid. The aim of the work was to develop rapid, high-throughput bioassays for monitoring patulin degradation in multiple samples. Escherichia coli was highly sensitive to patulin, but insensitive to desoxypatulinic acid. This was utilized to develop a detection test for patulin, replacing time-consuming thin layer chromatography or high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium and the other in semi-solid medium. Both assays allow the contemporary screening of a large number of samples. The liquid medium assay utilizes 96-well microtiter plates and was optimized for using a minimum of patulin. The semi-solid medium assay has the added advantage of slowing down the biodegradation, which allows the study and isolation of transient degradation products. The two assays are complementary and have several areas of utilization, from screening a bank of microorganisms for biodegradation ability to the study of biodegradation pathways.  相似文献   

5.
Ancient evaporite deposits are geological archives of depositional environments characterized by a long‐term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia (‘Rosetta Marble’) — characterized by their exceptional morphological preservation — and their ‘marine’ geochemical signatures are described and interpreted in a process‐oriented context. These rocks recorded Late Cretaceous high‐pressure/low‐temperature, subduction‐related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre‐scale, rock‐forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon‐bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling‐induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta‐selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13C‐enriched (mean 2·2‰) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component‐specific analysis of a rock slab displays isotopic variances between meta‐selenite crystals (mean δ13C 2·2‰) and host matrix (mean δ13C 1·3‰). The Cretaceous evaporite‐pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto‐Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best‐preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta‐selenite in deep time.  相似文献   

6.
Microstructures of probable biologic origin have been described within early diagenetic chert from near the top of the Mescal Formation of Proterozo c (1.2–1.4 b.y.) age, from exposures in the vicinity of Horse Camp, McFadden Peak Quadrangle, Arizona. The structures, nearly all hematite in composition, are interpreted as replacements of microorganisms and have been divided into three categories: Type A, filamentous chains; Type B, discrete and grouped spherules; and Type C, globular aggregates. The Type A structures are interpreted as replacements of filamentous blue-green algae. Type B structures are thought to be replacements of blue-green algae, although the possibility exists that some may represent chlorophycean algae. Type C structures are tentatively interpreted as pyrite framboids subsequently altered to hematite.  相似文献   

7.
In coastal ecosystems with long flushing times (weeks to months) relative to phytoplankton growth rates (hours to days), chlorophyll a (chl-a) integrates nutrient loading, making it a pivotal indicator with broad implications for ecosystem function and water-quality management. However, numerical chl-a criteria that capture the linkage between chl-a and ecosystem impairments associated with eutrophication (e.g., hypoxia, water clarity and loss of submerged aquatic vegetation, toxic algal blooms) have seldom been developed despite the vulnerability of these ecosystems to anthropogenic nutrient loading. Increases in fertilizer use, animal wastes, and population growth in the Chesapeake Bay watershed since World War II have led to increases in nutrient loading and chl-a. We describe the development of numerical chl-a criteria based on long-term research and monitoring of the bay. Baseline chl-a concentrations were derived using statistical models for historical data from the 1960s and 1970s, including terms to account for the effects of climate variability. This approach produced numerical chl-a criteria presented as geometric means and 90th percentile thresholds to be used as goals and compliance limits, respectively. We present scientific bases for these criteria that consider specific ecosystem impairments linked to increased chl-a, including low dissolved oxygen (DO), reduced water clarity, and toxic algal blooms. These multiple lines of evidence support numerical chl-a criteria consisting of seasonal mean chl-a across salinity zones ranging from 1.4 to 15 mg m?3 as restoration goals and corresponding thresholds ranging from 4.3 to 45 mg m?3 as compliance limits. Attainment of these goals and limits for chl-a is a precondition for attaining desired levels of DO, water clarity, and toxic phytoplankton prior to rapid human expansion in the watershed and associated increases of nutrient loading.  相似文献   

8.
Understanding the mechanisms of cadmium and selenium behavior under near-surface conditions is very important for solving certain environmental problems. The principal aim of this study is physicochemical analysis of the formation conditions of synthetic cadmium selenite CdSeO3 · H2O and experimental investigation of its thermal stability and dehydration and dissociation mechanisms. The synthesis was performed by boiling-dry aqueous solutions of cadmium nitrate and sodium selenite. The obtained samples were identified with electron microprobe and powder X-ray diffraction. Complex thermal analysis (thermogravimetry and differential scanning calorimetry) have shown that CdSeO3 · H2O is dehydrated at 177–241°C in two stages, apparently corresponding to the formation of CdSeO3 · 2/3H2O. The Eh–pH diagrams were calculated using the Geochemist’s Workbench (GWB 9.0) software package. The Eh–pH diagrams have been calculated for the Cd–Se–Н2О and Cd–Se–CO2–H2O systems for the average content of these elements in underground waters. The formation of cadmium selenite, CdSeO3 · H2O in the oxidation medium is quite possible. The existence of CdSeO3 is possible at high temperature.  相似文献   

9.
X-ray absorption fine structure (XAFS) spectroscopic analysis at the As, Se, and Mn K-edges was used to study arsenate [As(V)O43−] and selenite [Se(IV)O32−] sorption complexes on the synthetic hydrous manganese oxides (HMOs) vernadite (δ-MnO2) and K-birnessite (nominal composition: K4Mn14O27 · 9H2O). No significant changes were observed in sorption complex structure as a function of sorbent, pH (5 to 8), surface coverage (0.04 to 0.73 μmol/m2), or reaction time (5 to 22 h) in the arsenate or selenite systems. In the arsenate/HMO system, extended XAFS parameters indicate an average second-neighbor As(V) coordination of 2.0 ± 0.4 Mn at an average distance of 3.16 ± 0.01 Å, which is consistent with formation of As(V)O4 sorption complexes sharing corners with two adjacent Mn(IV)O6 surface species (i.e., bidentate, binuclear). In the selenite/HMO system, selenite surface complexes are surrounded by two shells of Mn atoms, which could represent two different adsorption complexes or a precipitate. The first shell consists of 1.6 ± 0.4 Mn at 3.07 ± 0.01 Å, which is consistent with the selenite anion forming bidentate (mononuclear) edge-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. The second shell consists of 1.4 ± 0.4 Mn at 3.49 ± 0.03 Å, consistent with selenite forming monodentate, corner-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. Pauling bond valence analysis that uses the extended XAFS-derived bond lengths for As(V)-O, Se(IV)-O, and Mn-O bonds indicates that the proposed surface complexes of selenite and arsenate on HMOs should be stable. Although a nearly identical Se(IV) coordination environment is found in a crystalline Mn(II)-Se(IV) precipitate (which has a structure similar to that of MnSeO3 · H2O), there are significant differences in the X-ray absorption near-edge structure and extended XAFS spectra of this precipitate and the selenite/HMO sorption samples. These differences coupled with transmission electron microscopy results suggest that if a precipitate is present it lacks long-range order characteristic of crystalline MnSeO3 · H2O.  相似文献   

10.
《Applied Geochemistry》2001,16(2):183-195
Geochemical and microbiological evidence indicates that viable microorganisms produce and consume volatile organic acids (VOA) in the Yegua formation. Acetic and propionic acid concentrations in mudstones range from 200 to 1270 and 20 to 38 nmol·gdw−1 respectively, whereas concentrations in sands are 50–200 and less than 20 nmol·gdw−1. VOA concentrations in sediments and in laboratory incubations suggest net production of VOAs by microorganisms in mudstones, and net consumption of VOAs by SO4 reducing bacteria (SRB) in sands. Notably, SRB activity is mostly confined to aquifer sands.Vertical diffusion and advection were modeled to estimate acetic acid transport from aquitard to aquifer. Assuming that SRB completely respire the acetic acid transported into the aquifer (3.2 μmol·l−1·m·a−1), the CO2 production rate in the aquifer sands is 5.3 μmol·l−1·a−1. This slow mineralization rate of in situ organic matter is within the range for deep aquifers, and probably accounts for the long-term survival of microorganisms in oligotrophic environments. Finally, the microbial communities in Yegua sediments appear to exhibit a loose commensalism, with microorganisms in aquitards providing VOAs for respiratory processes (i.e., SO4 reduction) in aquifers.  相似文献   

11.
The use of groundwater as a drinking water resource requires knowledge of its microbiological status and quality. In contrast to conventional microbiological monitoring of groundwater, the present study not only considers faecal indicator bacteria, but also covers a wide spectrum of microorganisms, including bacterial pathogens (verotoxin-producing E. coli, Campylobacter spp. and Salmonella spp., as well as Pseudomonas aeruginosa), human enteric viruses (norovirus, enterovirus, rotavirus and adenovirus) and parasitic protozoa (Cryptosporidium oocysts and Giardia cysts). Samples collected at karst sites of the Swiss National Groundwater Monitoring network revealed the presence of a large diversity of microorganisms of faecal origin, the occurrence of which could be linked to specific hydrogeological settings and situations. The findings represent a ‘snapshot’ of the microbiological status at the monitoring sites and provide a national overview of the types and presence of microorganisms in Swiss karst groundwater. In addition to microbiological parameters related to faecal contamination, the overall bacterial load in groundwater was assessed using cell density measurements (i.e. total cell count), which yielded typical ranges for this ecological parameter. The study highlights differential vulnerability of karst groundwater to microbiological contamination, as well as its relationship with the microbial biocenoses, i.e. the interplay of allochthonous and autochthonous microbial components. On the basis of this data set, a microbiological classification of karst aquifers is proposed and discussed with respect to spring dynamics and vulnerability.  相似文献   

12.
Since its discovery in natural estuarine habitat of North Carolina in 1991, the widespread impact of the toxic dinoflagellate, Pfiesteria piscicida (gen. et sp. nov.), popularly called the “phantom” dinoflagellate, on North Carolina fish stocks has been established, yet little is known about its influence outside of North Carolina estuaries. Here, we document the presence of P. piscicida in Chesapeake Bay. A fish kill was observed after inoculating an aquarium containing mummichogs with sediment samples from Jenkins Creek, a brackish creek (salinity 11‰) of the Chesapeake Bay system. P. piscicida was the cause of the kill, as supported by morphological, physiological, and histological evidence. The appearance and behavior of the algae and symptoms associated with fish mortality were consistent with those previously observed in P. piscicida-associated aquaria fish kills in North Carolina. The discovery of P. piscicida in Chesapeake Bay supports the speculation that these toxic dinoflagellates have a dramatic and far-reaching impact on fish stocks in shallow, eutrophic estuaries along the eastern United States.  相似文献   

13.
Sewage sludge from wastewater treatment plants (WWTPs) has increased in recent years in Spain and Europe in general. Agriculture seems a viable solution when seeking alternatives for its final disposal. Sewage sludge reuse can, however, pose risks given presence of heavy metals, pathogen microorganisms or toxic compounds, which must be controlled to minimize risks for human health and the environment. In the present study, the phytotoxicity of sewage sludge from the Alcázar de San Juan WWTP using two types of seeds (Lactuca sativa L. and Lepidium sativum L.) in bioassays was analyzed. The relative germination rates (RGP), relative radicle growth (RRG) and germination index were determined for both species. Hypocotyl length was measured in lettuce. Negative (distilled water) and positive (zinc sulfate) controls were prepared. Depending on the biological material and residue phytotoxicity dose, analyses can be modified given the different sensitivities of plants. Lepidium sativum L. was more sensitive to phytotoxic compounds than Lactuca sativa L. Hypocotyl measurements provide complementary toxicity information. A general agreement between authors and researchers to standardize this type of analysis would be useful to make criteria uniform.  相似文献   

14.
The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1?=?0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a?=?17.769(7), b?=?6.448(3), c?=?10.522(4) Å, V?=?1205.6(8) Å3, Z?=?4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.  相似文献   

15.
《Applied Geochemistry》2004,19(1):153-162
In aquatic systems, the bioavailability of an element to microorganisms is greatly influenced by its chemical speciation. The goal of this work was to assess metal toxicity to a green algae (Pseudokirchneriella subcapitata) and a bacterium (Vibrio fisheri) as a function of size fractionation and chemical speciation (using the program MINTEQA2) in contaminated water of the Upper Vistula River. Water samples were collected at 1 reference site, 4 polluted sites and one polluted site on the Vistula's main tributary, the Przemsza River. Toxicity measurements were performed on unfiltered samples and, total dissolved (<1.2 μm), and truly dissolved (<1 kDa) fractions. Trace metal (Cd, Co, Cr, Cu, Mn, Pb, Zn) concentrations were measured in these samples and also in the colloidal fraction (1 kDa–1.2 μm). At the reference site, the low metal concentrations were in agreement with the absence of measurable toxicity. In the polluted section of the river, free metal concentrations were largely below the potential toxic levels for bacteria, which was in agreement with the absence of toxicity. Although Zn2+ was at potentially toxic-level concentrations in total dissolved and truly dissolved fractions in the polluted riverine section, toxicity for algae was observed, only in truly dissolved fractions from two stations. The absence of toxicity in most samples was related to metal association with particles and with low molecular weight ligands as well as the presence of organic ligands (phenol). The reason for toxic effects in two ultrafiltered samples is not clear, but may be related to the elimination of the colloidal organic fraction and thus the eradication of its protective effect occurring in natural samples.  相似文献   

16.
Diverse assemblages of cellularly preserved Precambrian microorganisms have been discovered in cherty stromatolitic sediments from six formations in the Soviet Union: Sukhotungusin Fm. (Middle Riphean, Siberia); Valukhtin Fm. (Middle Riphean, Siberia); Shorikha Fm. (Upper Riphean, Siberia); Minyar Fm. (Upper Riphean, Bashkiria); Olkhin Fm. (Upper Riphean, Siberia); and Chichkan Fm. (Vendian, Kazakstan). These cyanophyte-dominated microbial communities, occurring in both stratiform (cf. Stratifera) and columnar stromatolitic deposits (Baicalia hirta and Conophyton gaubitza), are the first stromatolite-building microbiotas to be reported from the Soviet Union; collectively they comprise more than one-fifth of all such Precambrian assemblages now known.  相似文献   

17.
《Organic Geochemistry》1999,30(8):947-952
Three soil samples polluted by PAH were assessed for both acute (Vibrio fischeri [Microtox® test], Daphnia magna, Thamnocephalus platyurus) and chronic (Pseudokirchneriella subcapitata) toxicity, as well as for genotoxicity (Vibrio fischeri M169, [Mutatox® test]). Bioassays were performed on soil water leachates and on soil solvent extracts to characterise not only the fraction of water soluble pollutants but also to evaluate less soluble and soil-bound pollutants. The toxicity of the water leachates was low to moderate (from 0 to 30 toxic units) whereas the toxicity of the methanol extracts was about 100 to 10,000 toxic units. Although only slightly toxic, the genotoxicity of water leachates was clearly demonstrated. This finding shows that acute and chronic toxicity assays alone may not be sufficient to characterize soil hazards. A step procedure to characterise soil ecotoxicity is therefore proposed which allows one to study the pollutant mobility, toxicity and genotoxicity. It can be used to identify the hazard, to classify soil hazards and thus map contaminated sites, to assess the success of treatment and finally to monitor rehabilitated sites.  相似文献   

18.
Manganese oxides are observed to form by the oxidation of aqueous solutions of Mn(II) catalyzed by the action of microorganisms. In contrast to the widely studied material produced by bacteria, manganese oxide phases produced by the action of fungi have received only limited attention.A detailed study of the MnOx material produced by the action of the fungus Acremonium KR21-2, utilizing X-ray diffraction, XANES, EXAFS and transmission electron microscopy is reported. The MnOx material is produced as small crystalline particles which adopt a todorokite-like tunnel structure, in striking contrast to previously reported microbial MnOx materials which adopt layered birnessite-type structures. ICPMS measurements reveal there are no templating metal ions present in the fungally mediated MnOx material, in contrast to analogous bacterially mediated material, suggesting these cations play a critical role in determining the structure of the material precipitated. A phylogenetic analysis places KR21-2 with other Acremonium species in the Hypocreales.  相似文献   

19.
The detection of microorganisms with potential for biodeterioration and biodegradation in petroleum fields is of great relevance, since these organisms may be related to a decrease in petroleum quality in the reservoirs or damage in the production facilities. In this sense, petroleum formation water and oil samples were collected from the Campos Basin, Brazil, with the aim of isolating microorganisms and evaluating their ability to degrade distinct classes of hydrocarbon biomarkers (9,10-dihydrophenanthrene, phytane, nonadecanoic acid and 5α-cholestane). Twenty eight bacterial isolates were recovered and identified by sequencing their 16S rRNA genes. Biodegradation assays revealed that bacterial metabolism of hydrocarbons occurred through reactions based on oxidation, carbon–carbon bond cleavage and generation of new bonds or by the physical incorporation of hydrocarbons into microbial cell walls. Based on the biodegradation results, selective PCR-based systems were developed for direct detection in petroleum samples of bacterial groups of interest, namely Bacillus spp., Micrococcus spp., Achromobacter xylosoxidans, Dietzia spp. and Bacillus pumilus. Primer sets targeting 16S rRNA genes were designed and their specificity was confirmed in silico (i.e. computational analysis) and in PCR reactions using DNA from reference strains as positive and negative controls. Total DNA from oil was purified and the amplification tests revealed the presence of the target bacteria in the samples, unraveling a significant potential for petroleum deterioration in the reservoirs sampled, once proper conditions are present for hydrocarbon degradation. The application of molecular methods for rapid detection of specific microorganisms in environmental samples would be valuable as a supporting tool for the evaluation of oil quality in production reservoirs.  相似文献   

20.
Aquatic plants are used as a practical and effective method to remove toxic metals from secondary-treated municipal wastewater. In this study, Lemna gibba was investigated for its capacity to remove silver (Ag) and gold (Au) from secondary effluents. L. gibba was collected from a natural lake and then acclimatized to the effluent in situ. The concentration of toxic elements in the plant material was monitored as a function of time over 7 days. L. gibba accumulated significant amounts of Ag and Au for six days from initiation of the experimental study. The highest accumulations were 2303% for Ag and 247% for Au. However, after six days, the rate of Ag and Au accumulation in L. gibba declined, as saturation levels had been reached in the plant tissues. The metal accumulating property of L. gibba can also be commercially exploited to recover Au and Ag from wastewater and mining wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号