首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In normal faulting regimes, the magnitudes and orientations of the maximum and minimum principal compressive stresses may be known with some confidence. However, the magnitude of the intermediate principal compressive stress is generally much more difficult to constrain and is often not considered to be an important factor. In this paper, we show that the slip characteristics of faults and fractures with complex or nonoptimal geometry are highly sensitive to variation or uncertainty in the ambient effective intermediate principal stress (σ2). Optimally oriented faults and fractures may be less sensitive to such variations or uncertainties. Slip tendency (Ts) analysis provides a basis for quantifying the effects of uncertainty in the magnitudes and orientations of all principal stresses and in any stress regime, thereby focusing efforts on the most important components of the system. We also show, for a normal faulting stress regime, that the proportion of potential surfaces experiencing high slip tendency (e.g., Ts ≥ 0.6) decreases from a maximum of about 38% where σ2 = σ3, to a minimum of approximately 14% where σ2 is halfway between σ3 and σ1, and increases to another high of approximately 29% where σ2 = σ1. This analysis illustrates the influence of the magnitude of σ2 on rock mass strength, an observation previously documented by experimental rock deformation studies. Because of the link between fault and fracture slip characteristics and transmissivity in critically stressed rock, this analysis can provide new insights into stress-controlled fault transmissivity.  相似文献   

2.
H.J. Melosh 《Tectonophysics》1976,35(4):363-390
This paper investigates the effect of shear heating in the asthenosphere on the thermal structure of the upper mantle. Equations describing the motion of the lithosphere over the asthenosphere in the presence of a strongly temperature-dependent stress-strain rate relation are derived and solved with the help of several approximations. These approximations are shown to be valid under conditions appropriate for the earth.Two sets of solutions are found. For one set (the “subcritical” solutions) a normal shear stress—velocity relation is found for small stresses. The velocity increases as the stress increases, reaching a maximum velocity σc for a critical stress σc. The subcritical solutions have a negligible effect on the thermal structure of the earth, even at the critical stress. The other set of solutions (the “supercritical” solutions) has the bizarre property that a decrease of applied shear stress leads to an increase of velocity. Thus, as the shear stress goes to zero, the velocity becomes infinite. At larger shear stresses the velocity decreases until it reaches σc at a stress σc (the two sets of solutions share this point in common). There are no steady solutions of any kind for shear stresses in excess of σc. We discard the supercritical solutions as candidates for the thermal structure of the earth on the basis of their instability to small perturbations of applied stress and temperature.The realm of subcritical solutions (stress less than σc, velocity less than σc) thus defines a regime of plate motion in which the thermal effects of shear heating are negligible. If the shear stresses acting on plates exceed σc, however, new physical processes must come into play to dissipate the excess heat generated. Assuming that the velocities of plates on the earth today are less than σc, relative to the deep mantle, a strict upper limit of a few tens of bars can be derived for σc, corresponding to effective viscosities of ca. 1019 poise in the asthenosphere.  相似文献   

3.
A note on fault reactivation   总被引:2,自引:0,他引:2  
Reactivation of existing faults whose normal lies in the σ1σ3 plane of a stress field with effective principal compressive stresses σ1 >σ2 >σ3 is considered for the simplest frictional failure criterion, τ = μσn = μ(σnP), where τ and σn are respectively the shear and normal stresses to the existing fault, P is the fluid pressure and μ is the static friction. For a plane oriented at θ to σ1, the stress ratio for reactivation is (σ1/σ3) = (1 + μ cot θ)/(1 − μ tan θ). This ratio has a minimum positive value at the optimum angle for reactivation given by (1/μ) but reaches infinity when θ = 2θ*, beyond which σ3 < 0 is a necessary condition for reactivation. An important consequence is that for typical rock friction coefficients, it is unlikely that normal faults will be reactivated as high-angle reverse faults or thrusts as low-angle normal faults, unless the effective least principal stress is tensile.  相似文献   

4.
In this article, the shear behavior of discontinuities caused by bedding planes of weakness between two different rock types with high strength difference is investigated. The effect of roughness and compressive strength of joint wall in such discontinuities are studied. The designed profiles consist of two regular and three irregular artificial joints molded by three types of plaster mortars with different uniaxial compressive strengths. Firstly, it is demonstrated that the shear behavior of discontinuities with different joint wall compressive strengths (JCS) is different from rock joints with identical wall compressive strengths by showing that Barton’s empirical criterion is not appropriate for the former discontinuities. After that, some correlation equations are proposed between the joint roughness coefficient (JRC) parameter and some surface statistical/fractal parameters, and the normal stress range of Barton’s strength criterion is also modified to be used for such discontinuities. Then, a new empirical criterion is proposed for these discontinuities in such a way that a rational function is used instead of JRC log10(JCS/σ n) as i 0(σ c/σ n)a/[b + (σ c/σ n) a ] by satisfying the peak dilation angle boundary conditions under zero and very high normal stress (physical infinite normal stress causing zero peak dilation angle). The proposed criterion has three surface parameters: i 0, a, and b. The reason for separation of i 0 from JRC is indicated and the method of its calculation is mentioned based on the literature. The two remaining coefficients (a and b) are discussed in detail and it is shown that a shows a power-law relationship with b, introducing the coefficient c through b = c a . Then, it is expressed that a is directly related to discontinuity surface topography. Finally, it is shown that the coefficient c has higher values in irregular profiles in comparison with regular profiles and is dominated by intensity of peak dilation angle reduction (majorly related to the surface irregularity and minorly related to roughness). The coefficient c is to be determined by performing regression analysis on experimental data.  相似文献   

5.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

6.
The stability of vertical unsupported circular excavations in rock media, obeying generalized Hoek-Brown yield criterion, has been investigated by using the lower bound finite elements limit analysis. An axisymmetric analysis, composed of a planar domain with a mesh of three-noded triangular elements, has been carried out. The optimization problem is dealt with by using the semidefinite programming technique avoiding the need of either smoothing the yield surface or making any assumption associated with the circumferential stress (σθ). A detailed parametric study has been executed, and the effects of different input material parameters, namely, geological strength index (GSI), yield parameter (mi), and the disturbance factor (D) on the results have been studied. For different height to radius ratios of the excavation, the computed results are presented in the form of nondimensional stability numbers. Failure mechanisms have also been investigated for a few typical cases. The results from the analysis have been compared with that evaluated separately with the application of the software OptumG2.  相似文献   

7.
Shear strain γ in brittle fault zones is related to final and initial grain size parameters, df and di, respectively, by an expression of the form: where μk the coefficient of kinetic friction of crushed rock and σn the normal stress across the zone at the time of faulting.Technological literature suggests that ƒ(df, di) may be given by 10 , where Wi is a material constant. The resulting relationship between shear strain and grain size seems to be compatible with existing experimental data.  相似文献   

8.
J. L. M. van Mechelen   《Tectonophysics》2004,384(1-4):275-284
A technique has been developed to control the strength of moistened sand in a quantifiable, accurate and reproducible way, while other mechanical properties were maintained. Strength of dry sand was increased through adding a small amount of liquid. In order to control the additional cohesion of moist sand, the influence of the surface tension of the liquid was investigated. Direct shear experiments were performed on four granular materials at confining stress levels below 1 kPa. It has been found that the surface tension of the added liquid controlled the additional apparent cohesion of sand with high accuracy. The mechanical properties of moist sand show dynamic similarity towards natural brittle rock, which enables analogue modelling of fault formation, fault reactivation and tension fracture formation in the brittle regime with a controlled strength profile. Furthermore, experimental results fit well to shear strength models. From this followed the direct proportionality of the unsaturated shear strength parameter φb relative to the matrix suction, measured at low stress levels. Moreover, shear strength turned out to be also a function of grain size and the grain shape.  相似文献   

9.
A numerical investigation was made of the relationships between fracture initiation, growth, stress field and boundary conditions. Two-dimensional plane strain continuum models were used in which fractures appeared as zones of strain localization developed through application of a strain softening Mohr–Coulomb constitutive model. R and R′ fractures developed first, followed by Y fractures at larger strains. The models showed that equal development of conjugate R and R′ fractures is easily changed to favor one or the other set by minor variations in model initial conditions. Strength loss in fractures caused stress field rotations in regions bounded by fractures, altering the orientation of subsequent fractures. The amount and sense of stress field rotation is dependent on the strength loss during displacement on the fractures, the orientation of fractures, and on the boundary conditions. Y oriented fractures could be explained on the basis of a Mohr–Coulomb failure criterion provided that stress field rotation is accounted for. Monitoring of fracture slip activity showed that, under conditions of constant boundary velocity, slip was discontinuous in time, alternating on fractures throughout the model.  相似文献   

10.
Physical and stochastic models of earthquake clustering   总被引:4,自引:2,他引:4  
The phenomenon of earthquake clustering, i.e., the increase of occurrence probability for seismic events close in space and time to other previous earthquakes, has been modeled both by statistical and physical processes.From a statistical viewpoint the so-called epidemic model (ETAS) introduced by Ogata in 1988 and its variations have become fairly well known in the seismological community. Tests on real seismicity and comparison with a plain time-independent Poissonian model through likelihood-based methods have reliably proved their validity.On the other hand, in the last decade many papers have been published on the so-called Coulomb stress change principle, based on the theory of elasticity, showing qualitatively that an increase of the Coulomb stress in a given area is usually associated with an increase of seismic activity. More specifically, the rate-and-state theory developed by Dieterich in the ′90s has been able to give a physical justification to the phenomenon known as Omori law. According to this law, a mainshock is followed by a series of aftershocks whose frequency decreases in time as an inverse power law.In this study we give an outline of the above-mentioned stochastic and physical models, and build up an approach by which these models can be merged in a single algorithm and statistically tested. The application to the seismicity of Japan from 1970 to 2003 shows that the new model incorporating the physical concept of the rate-and-state theory performs not worse than the purely stochastic model with two free parameters only. The numerical results obtained in these applications are related to physical characters of the model as the stress change produced by an earthquake close to its edges and to the A and σ parameters of the rate-and-state constitutive law.  相似文献   

11.
The co-seismic deformations produced during the September 27, 2003 Chuya earthquake (Ms = 7.5) that affected the Gorny Altai, Russia, are described and discussed along a 30 km long segment. The co-seismic deformations have manifested themselves both in unconsolidated sediments as R- and R′-shears, extension fractures and contraction structures, and in bedrock as the reactivation of preexisting schistosity zones and individual fractures, as well as development of new ruptures and coarse crushing zones. It has been established that the pattern of earthquake ruptures represents a typical fault zone trending NW–SE with a width reaching 4–5 km and a dextral strike–slip kinematics. The initial stress field that produced the whole structural pattern of co-seismic deformations during the Chuya earthquake, is associated with a transcurrent regime with a NNW–SSE, almost N–S, trending of compressional stress axis (σ1), and a ENE–WSW, almost E–W, trending of tensional stress axis (σ3). The state of stress in the newly-formed fault zone is relatively uniform. The local stress variations are expressed in insignificant deviation of σ1 from N–S to NW–SE or NE–SW, in short-term fluctuations of relative stress values in keeping their spatial orientations, or in a local increase of the plunge angle of the σ1. The geometry of the fault zone associated with the Chuya earthquake has been compared with the mechanical model of fracturing in large continental fault zones with dextral strike–slip kinematics. It is apparent that the observed fracture pattern corresponds to the late disjunctive stage of faulting when the master fault is not fully developed but its segments are already clearly defined. It has been shown that fracturing in widely different rocks follows the common laws of the deformation of solid bodies, even close to the Earth surface, and with high rates of movements.  相似文献   

12.
The prime objective of this work is to improve our understanding of the shear behavior of rock joints. Attempts are made to relate the peak shear strength of rock joints with its three-dimensional surface morphology parameters. Three groups of tensile joint replicas with different surface morphology are tested with direct shear tests under constant normal load (CNL) conditions. Firstly, the three-dimensional surface characterization of these joints is evaluated by an improved roughness parameter before being tested. Then, a new empirical criterion is proposed for these joints expressed by three-dimensional quantified surface roughness parameters without any averaging variables in such a way that a rational dilatancy angle function is used instead of ${\text{JRC}} \cdot \log_{10} \left( {{{\text{JCS}} \mathord{\left/ {\vphantom {{\text{JCS}} {\sigma_{\text{n}} }}} \right. \kern-0em} {\sigma_{\text{n}} }}} \right)$ by satisfying the new peak dilatancy angle boundary conditions under zero and critical-state normal stress (not physical infinite normal stress). The proposed criterion has the capability of estimating the peak shear strength at the laboratory scale and the required roughness parameters can be easily measured. Finally, a comparison among the proposed criterion, Grasselli’s criterion, and Barton’s criterion are made from the perspective of both the rationality of the formula and the prediction accuracy for the three groups of joints. The limitations of Grasselli’s criterion are analyzed in detail. Another 37 experimental data points of fresh rock joints by Grasselli are used to further verify the proposed criterion. Although both the proposed criterion and Grasselli’s criterion have almost equal accuracy of predicting the peak shear strength of rock joints, the proposed criterion is easier and more intuitive from an engineering point of view because of its Mohr–Coulomb type of formulation.  相似文献   

13.
Deformation models used to explain the triggering mechanism often assume pure elastic behaviour for the crust and upper mantle. In reality however, the mantle and possibly the lower crust behave viscoelastically, particularly over longer time scales. Consequently, the stress field of an earthquake is in general time-dependent. In addition, if the elastic stress increase were enough to trigger a later earthquake, this triggered event should occur instantaneously and not many years after the triggering event. Hence, it is appropriate to include inelastic behaviour when analysing stress transfer and earthquake interaction.In this work, we analyse a sequence of 10 magnitude Ms > 6.5 events along the North Anatolian Fault between 1939 and 1999 to study the evolution of the regional Coulomb stress field. We investigate the triggering of these events by stress transfer, taking viscoelastic relaxation into account. We evaluate the contribution of elastic stress changes, of post-seismic viscoelastic relaxation in the lower crust and mantle, and of steady tectonic loading to the total Coulomb stress field. We analyse the evolution of stress in the region under study, as well as on the rupture surfaces of the considered events and their epicentres. We study the state of the Coulomb stress field before the 1999 İzmit and Düzce earthquakes, as well as in the Marmara Sea region.In general, the Coulomb stress failure criterion offers a plausible explanation for the location of these events. However, we show that using a purely elastic model disregards an important part of the actual stress increase/decrease. In several cases, post-seismic relaxation effects are important and greater in magnitude than the stress changes due to steady tectonic loading. Consequently, viscoelastic relaxation should be considered in any study dealing with Coulomb stress changes.According to our study, and assuming that an important part of the rupture surface must be stressed for an earthquake to occur, the most likely value for the viscosity of the lower crust or mantle in this region is 5 · 1017–1018 Pa · s. Our results cannot rule out the possibility of other time-dependent processes involved in the triggering of the 1999 Düzce event. However, the stress increase due to viscoelastic relaxation brought 22% of the 1999 Düzce rupture area over the threshold value of Δσc ≥ 0.01 MPa (0.1 bar), and took the whole surface closer to failure by an average of 0.2 MPa. Finally, we argue that the Marmara Sea region is currently being loaded with positive Coulomb stresses at a much faster rate than would arise exclusively from steady tectonic loading on the North Anatolian Fault.  相似文献   

14.
Kinematic analysis of fault slip data for stress determination was carried out on Late Miocene to Quaternary rocks from the fore arc and intra-arc regions of the Chilean Andes, between 33° and 46° south latitudes. Studies of Neogene and Quaternary infilling (the Central Depression), as well as plutonic rocks of the North Patagonian Batholith along the Liquiñe–Ofqui Fault Zone, have revealed various compressional and/or transpressional states of stress. In the Pliocene, the maximum compressional stress (σ1) was generally oriented east–west. During the Quaternary, the deformation was partitioned into two coeval distinctive states of stress. In the fore arc zone, the state of stress was compressional, with σ1 oriented in a N–S to NNE–SSW direction. In the intra-arc zone the state of stress was transpressional with σ1 striking NE–SW. Along the coast, in one site (37°30′S) the Quaternary strain deformation is extensional, with an E–W direction, which can be explained by a co-seismic crustal bending readjustment.  相似文献   

15.
为建立更符合岩石屈服与破坏机制的强度准则,基于能量转化是岩石屈服与破坏的本质属性,采用试验与理论分析相结合的方法,对岩石屈服与破坏准则进行了研究。以岩石强度与整体破坏准则为基础,通过引入弹性应变能释放分散系数,建立基于弹性应变能强度准则;分别采用M-C准则、Murrell准则、三剪能量准则、统一能量准则、三维H-B强度准则及基于弹性应变能岩石强度准则对盐岩和花岗岩的破坏强度进行了计算。结果表明,基于弹性应变能岩石强度准则的计算结果与试验值比较吻合(尤其是真三轴试验条件下),并且分析了产生上述结果的内在机制。所建立的强度准则仅需测定常规岩石力学参数(单轴抗压强度与泊松比),物理力学意义明确,对于定量描述岩石的屈服与破坏特性具有重要的意义。  相似文献   

16.
为考虑中间主应力对岩石极限破坏强度作用,在广义Hoek-Brown强度准则幂率项中添加定量表征中间主应力项,构建新的三维Hoek-Brown强度准则。该准则在主应力空间是通过3个角点外接Hoek-Brown准则包络面的曲六面体,在 空间包络线是幂律型曲线。通过与Hoek-Brown准则、Drucker-Prager准则和Mogi准则分别对4组真三轴压缩强度试验数据的拟合对比分析,探讨其反映中间主应力效应的适用性。结果表明,修正的Hoek-Brown强度准则拟合试验数据效果总体最好,Mogi准则次之,Hoek-Brown准则和Drucker-Prager准则较差。从而修正的Hoek-Brown强度准则最适用于粗面岩、大理岩和花岗岩等硬脆性岩石的真三轴强度预测及中间主应力影响规律描述。  相似文献   

17.
A new method to determine stress directions using the preferential orientation of plagioclase mechanical twins has been applied to high-temperature mylonitic rocks from the Além Paraíba shear zone, Ribeira fold belt, southeastern Brazil. We have measured the lattice-preferred orientation of plagioclase grains and calculated the orientation of the stress axes possible for the observed twin orientations. The maximum compressive stress direction (σ1), determined for all studied samples, is a function of the mechanical twin orientations of a number of distinct plagioclase populations. The σ1 direction is generally subperpendicular to the (010) plane. The statistical treatment for most of the plagioclase grains examined for each sample shows that σ1 is almost perpendicular to the foliation plane, suggesting a significant coaxial component in the deformation process of these rocks.  相似文献   

18.
We are presenting an attempt to evaluate the spatial variability of geotechnical parameters in the upper Pleistocene–Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics.The upper Pleistocene–Holocene alluvial deposits of Roma are sensitive to high levels of geohazard. They occupy a sizable and significant part of the city, being the foundation for many monuments, historical neighborhoods, and archaeological areas, and the main host of the present and future subway lines. We have stored information from more than 2000 geotechnical boreholes crossing the alluvial deposits into a relational database. For the present study, only the boreholes with lithologic/textural interpretation and geotechnical information were selected. The set includes 283 boreholes and 719 samples, which have a set of geotechnical information comprising physical properties and mechanical parameters.Techniques of multivariate statistics and geostatistics were combined and compared to evaluate the estimation methods of the mechanical parameters, with special reference to the drained friction angle from direct shear test (φ′). Principal Component Analysis was applied to the dataset to highlight the relationships between the geotechnical parameters. Through cross-validation analysis, multiple linear regression, kriging, and cokriging were tested as estimators of φ′. Cross-validation demonstrates that the cokriging with granulometries as auxiliary variables is the most suitable method to estimate φ′. In addition to proving that cokriging is a good estimator of φ′, cross-validation demonstrates that input data are coherent and this allows us to use them for estimation of geotechnical parameters, although they come from different laboratories and different vintages.Nevertheless, to get the same good results of cross-validation in estimation, it is necessary for granulometries to be available at grid points. Since this information being not available at all grid points, it is expected that, in the future, textural information can be derived in an indirect way, i.e., from lithologic/textural spatial reconstructions.  相似文献   

19.
Microfabrics were analysed in calcite mylonites from the rim of the Pelvoux massif (Western Alps, France). WNW-directed emplacement of the internal Penninic units onto the Dauphinois domain produced intense deformation of an Eocene-age nummulitic limestone under lower anchizone metamorphic conditions (slightly below 300 °C). Two types of microfabrics developed primarily by dislocation creep accompanied by dynamic recrystallisation in the absence of twinning. Coaxial kinematics are inferred for samples exhibiting grain shape fabrics and textures with orthorhombic symmetry. Their texture (crystallographic preferred orientation, CPO) is characterised by two c-axis maxima, symmetrically oriented at 15° from the normal to the macroscopic foliation. Non-coaxial deformation is evident in samples with monoclinic shape fabrics and textures characterised by a single oblique c-axis maximum tilted with the sense of shear by about 15°. From the analysis of suitably oriented slip systems for the main texture components under given kinematics it is inferred that the orthorhombic textures, which developed in coaxial kinematics, favour activity of <10–11> and <02–21> slip along the f and r planes, respectively, with minor contributions of basal-<a> slip. In contrast, the monoclinic textures, which developed during simple shear, are most suited for duplex <a> slip along the basal plane. The transition between the dominating slip systems for the orthorhombic and monoclinic microfabrics is interpreted to be due to the effects of dynamic recrystallisation upon texture development. Since oblique c-axis maxima documented in the literature are most often rotated not with but against the shear sense, calcite textures alone should not be used as unequivocal shear sense indicators, but need to be complemented by microstructural criteria such as shape preferred orientations, grain size estimates and amount of twinning.  相似文献   

20.
A new three-dimensional (3D) Hoek–Brown (HB) failure criterion based on an elliptical Lode dependence is proposed to describe failure of rocks and concrete under multiaxial stress states. This criterion not only inherits all benefits of the classical HB criterion that is developed for the triaxial compression (TXC) of rocks but also accounts for the effect of the intermediate principal stress. It is capable of representing the strength difference between the triaxial extension (TXE) and TXC with the introduction of an additional coefficient k (0.5 ≤ k ≤ 1.0), which can be derived from TXE tests or taken as 0.53 for rocks in cases where the TXE test data is unavailable. Other two material constants (mi and σci) involved in this criterion can be obtained from TXC tests. Additionally, the failure surface of this criterion is smooth and convex on the deviatoric stress plane when 0.5 < k ≤ 1.0. The new criterion achieves very good fit to the test data of TXC/TXE, biaxial compression, and polyaxial compression (PXC) on a wide variety of rock materials and concrete, reported in the literature. Comparison of the new criterion with an existing 3D HB criterion based on the same Lode dependence has demonstrated that the new criterion performs better than the latter for test data of rock and concrete under multiaxial stress states except for PXC test data of one rock type. Finally, the influence of values of k on the accuracy of the new criterion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号