首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Detailed ISOPHOT observations of the far infrared excess of α Lyrae (Vega) are presented. The data comprise photometry in the range 25μm to 200μm and high resolution 60μm scan data to compare with 60μm and 90μm oversampled maps. The dust disk around Vega is clearly resolved. In addition similar maps of HD98800, SAO226057, SAO186777 and α Piscis Austrinus (HR8728) are evaluated, resolving the disks of two Vega-like stars/candidates and providing upper limits for the size of the other two. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
We present an X-ray spectroscopic study of the bright Compton-thick Seyfert 2 galaxies NGC 1068 and the Circinus Galaxy, performed with BeppoSAX . Matt et al. interpreted the spectrum above 4 keV as the superposition of Compton reflection and warm plasma scattering of the nuclear radiation. When this continuum is extrapolated downwards to 0.1 keV, further components arise. The NGC 1068 spectrum is rich in emission lines, mainly owing to K α transitions of He-like elements from oxygen to iron, plus a K α fluorescent line from neutral iron. If the ionized lines originate in the warm scatterer, its thermal and ionization structure must be complex. From the continuum and line properties, we estimate a column density, N warm, of the warm scatterer less than a few×1021 cm−2. In the Circinus Galaxy, the absence of highly ionized iron is consistent with a scattering medium with U X≲5 and N warm∼ a few×1022 cm−2. In both cases the neutral iron line is most naturally explained as fluorescence in the medium responsible for the Compton reflection continuum. In NGC 1068 an optically thin plasma emission with kT ≃500 eV and strongly sub-solar metallicity is required, while such a component is only marginal in the Circinus Galaxy. We tentatively identify this component as emission of diffuse hot gas in the nuclear starbursts. Possible causes for the metal depletion are discussed.  相似文献   

3.
We present a study of the nearby Seyfert galaxy NGC 3982 using optical,infrared and X-ray data acquired by SDSS,Spitzer and Chandra.Our main results are as follows:(1) A simple stellar population synthesis on the nuclear and circumnuclear SDSS spectra gives unambiguous evidence of young stellar components in both the nuclear and circumnuclear regions.(2) The Spitzer Infrared Spectrograph (IRS) spectrum of the central region (~3") shows a power-law continuum,a silicate emission feature at 9.7 μm,and significant PAH emission features at 7.7,8.6,11.3 and 12.7/zm,suggesting the coexistence of AGN and starburst activities in the central region of NGC 3982.(3) We estimate the star formation rate (SFR) of the circumnuclear (~5"-20") region from the Ha luminosity to be for the active nucleus of NGC 3982 from radio to X-ray,and obtain a bolometric luminosity of Lbol=4.5×1042 erg s-1,corresponding to an Eddington ratio (Lbol/LEdd) of 0.014.The HST image of NGC 3982 shows a nuclear mini-spiral between the circumnuclear starforming region and the nucleus,which could be the channel through which gas is transported to the supermassive black hole from the circumnuclear star-forming region.  相似文献   

4.
An overview is given of the PAH and crystalline silicate emissions seen in the SWS guaranteed-time programme on planetary nebulae. Of the 9 objects on which good continuum measurements were obtained above 29 μm, 7 show evidence of olivine emission at 33.5 μm. PAH emission is seen in 5 of these objects, 3 objects show both PAH's and olivines. The presence of both types of features in a single object points to separate carbon-rich and oxygen-rich episodes of mass ejection. The spectrum of the nebula NGC 6302 shows a wealth of features in the range between 20 and 45 μm, many of which can be identified with olivines or pyroxenes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Recent ultraviolet and X-ray observations suggest that the Fe/O ratio in the NLR gas in NGC 1068 is abnormally high. The X-ray analysis, which is presented elsewhere, suggests a large Fe/H and the data shown and discussed here, in particular the extremely weak O III] λ1663 line, argue for small O/N and O/C. Models to support this claim are shown and discussed. They include improved reddening estimates, dusty and dust-free calculations, and abnormal abundances. The anomalous composition makes NGC 1068 unique among Seyfert galaxies and an unusual laboratory for investigating metal enrichment and depletion.  相似文献   

6.
We present the results of our tests of an acousto-optical imaging spectrophotometer with a CCD detector for astronomical observations. The tunable acousto-optical filter, based on a paratellurite single crystal with a 13 Å pass band operates in the wavelength range 6300–11000 Å. We obtained image spectra for the planetary nebula NGC 7027 in the Hα line and for Saturn in the methane absorption band, as well as Hα and continuum images for the nuclear region of the Seyfert galaxy NGC 1068.  相似文献   

7.
In this paper we present simulations of an extragalactic jet interacting with a clumpy and filamentary narrow line region (NLR) similar to the one observed in NGC 1068. We study the kinematic disturbance produced by the interaction. Hα recombination emissivity maps and the spectral distribution of the emission are calculated. We find that ablation flows from high density clouds in the turbulent cocoon can produce fast, high emissivity flows, resulting in line widths of the order of 1000 km s-1 comparable to those observed in NGC 1068 and other Seyfert galaxies with radio ejecta.  相似文献   

8.
Images of mid-infrared (5 - 20µm) circumstellar dust sources have been obtained with a new 58 × 62 pixel infrared array camera system. A seven-color imaging study of the bright planetary nebula NGC 7027 challenges the assertion that polycyclic aromatic hydrocarbons (PAH) may extend further from the center of the nebula than the continuum emission from silicate dust grains. It appears that the overall distributions are nearly identical, ruling out differences in intensity between the PAH emission and the general “silicate” dust material. A rigorous comparison between the infrared image data and new visible CCD images of NGC 7027 is made.  相似文献   

9.
We have used the Very Large Array (VLA) to search for the H92α radio recombination line (RRL) in four starburst galaxies. In NGC 660, the line was detected over a 17Å‐8 arcsec2 region near its starburst nucleus. The line and continuum emission indicate that the RRL-emitting gas is most likely in the form of a cluster of H ii regions with a small filling factor. Using a simple model we find that the total ionized mass in the nuclear region is in the range 2–8Å‐104 M⊙ and the rate of production of UV photons N Lyc∼1–3Å‐1053 s−1. The ratio of H92α and Brγ line intensities in NGC 660 indicates that extinction is significant even at λ=2 μm. The velocity field of the ionized gas is consistent with a rotating disc with an average velocity gradient of ∼15 km s−1 arcsec−1. The dynamical mass within the central 500 pc is ∼4Å‐108 M⊙ and may be about ∼6Å‐107 M⊙ within the central 120 pc. No line was detected in the other galaxies (NGC 520, NGC 1614 and NGC 6946) to a 3σ limit of 300 μJy. In the starburst galaxies in which RRLs have been detected, we find that there is a rough correlation between the integrated H92α line flux density and both the total far-infrared flux density and the radio continuum emission from the central region.  相似文献   

10.
The radio jet axis of NGC 1068 is characterised by energetic activity from x-ray to radio wavelengths. Detailed kinematic and polarization studies have shown that this activity is confined to bipolar cones centered on the AGN which intersect the plane of the disk. Thus, molecular clouds at 1 kpc distance along this axis are an important probe of the nuclear ionizing luminosity and spectrum. Extended 10.8μm emission coincident with the clouds is reasonably understood by dust heated to high temperatures by the nuclear radiation field. This model predicts that the nuclear spectrum is quasar-like (power law + blue excess) with a luminosity 2-5 times higher than inferred by Pier et al. (1994). Consequently, there is little or no polyaromatic hydrocarbon (PAH) emission associated with the radio-axis molecular clouds. We review this model in the light of new observations. A multi-waveband collage is included to illustrate the possible orientations of the double cones to our line of sight and the galaxian plane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present two BeppoSAX observations of the bright Seyfert 1 galaxy NGC 3516, performed four months apart (late 1996–early 1997). The earlier spectrum is considerably weaker and harder in the whole 0.1–50 keV energy range. In addition, the warm absorber oxygen features, which were already observed with ROSAT and ASCA , are much less pronounced. The most straightforward explanation is that in 1996 November NGC 3516 was being seen through a substantial ( N H≃1022 cm−2) column of cold material. This is the first confirmation with modern instrumentation that NGC 3516 indeed undergoes phases of strong cold X-ray absorption. We speculate that these intervals may be connected to the onset of the remarkably variable UV absorption system, making NGC 3516 the best known example of a low-luminosity broad absorption line (BAL) quasar. The absorbing matter could be provided by clouds ablated from the rim of the circumnuclear molecular torus, seen at a rather high inclination angle.  相似文献   

12.
We present the velocity field of the stars in the central 25″ × 22″ of NGC 1068 derived from 2-D spectroscopy of the Ca II triplet. A preliminary analysis provides evidence for two distinct stellar systems in the centre of NGC 1068. In the outer regions (say r > 10″), the mean stellar velocity field seems coupled to those of the ionized and molecular gas, indicating aproximately regular rotation with the kinematic minor axis at PA ~ 0°. However, in the inner region, the stars are rotating, whereas the ionized gas is outflowing in the NE-SW direction probably due to the effects of the nuclear activity, and the molecular gas is responding to the bar potential. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We have conducted UBVRI and Hα CCD photometry of five barred galaxies (NGC 2523, NGC 2950, NGC 3412, NGC 3945 and NGC 5383),along with SPH simulations, in order to understand the origin of young stellar populations in the nuclei of barred galaxies. The Hα emission, which is thought to be emitted by young stellar populations, is either absent or strongly concentrated in the nuclei of early-type galaxies (NGC 2950, NGC 3412 and NGC 3945),while they are observed in the nuclei and circumnuclear regions of intermediate-type galaxies with strong bars (NGC 2523 and NGC 5383).SPH simulations of realistic mass models for these galaxies show that some disc material can be driven into the nuclear region by a strong bar potential. This implies that the young stellar populations in the circumnuclear regions of barred galaxies can be formed out of such gas. The existence of nuclear dust lanes is an indication of an ongoing gas inflow and extremely young stellar populations in these galaxies, because nuclear dust lanes such as those in NGC 5383 are not long-lasting features according to our simulations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

15.
ISO spectra of the supernova remnant RCW103 are presented. This object is the prototype of a SNR shock heavily interacting with dense ISM (probably a molecular cloud). The spectra are dominated by prominent lines and show very little continuum at λ < 40 μm suggesting that the 12 and 25 μm IRAS emission from these types of remnant could be dominated by lines rather than continuum emission from warm dust heated by the shock as generally believed. The ISO data provide for the first time a simple and reliable estimate of the gas phase abundances of Si and Fe which are found to be close to solar relative to non refractory species such as Ne, S and Ar. This indicates that the shock is very effective in destroying the ISM dust and may therefore explain the absence of warm dust behind the shock. Like the optical Nickel lines, [NiII]6.63 μm yields Ni/Fe abundances a factor ≥ 10 above solar which we conclude results from a large underestimation of the computed Ni+ collision strengths. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
We have obtained HST FOC f/48 long-slit spectroscopy of the central 2 arcseconds of the Narrow Line Region of NGC 1068 between 3500-5400\OA with a spectral resolution of 1.78\OA/pixel. At a spatial scale of 0″.0287 per pixel these data provide an order of magnitude improvement in resolution over previous ground based spectra and allow us to trace the interaction between the radio jet and the gas in the NLR. Our results show that, within ±0″.5 of the radio-jet the emission lines are split into two components whose velocity separation is 1500 km s-1. The emission line structure is reminiscent of that seen previously around the jet of 3C120. Furthermore, this material enveloping the radio-jet is in a much higher ionization state than that of the surrounding NLR gas. The highest excitation is coincident with the jet axis where emission in the coronal line of [FeVII] λ3769\OA is detected but where [OII] λ3727 \OA is depressed. These results imply that we are witnessing a cocoon of hot gas in expansion around the radio-jet created by its interaction with the gas, and that these shocks are sufficiently fast, at least ± km s-1, that they are creating localized ionization effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Near-infrared, adaptive optics observations of AGN achieve a spatial resolution comparable to that of the Hubble Space Telescope at visible and ultraviolet wavelengths. Using the ESO adaptive optics system, we have mapped the nuclear region of NGC 1068 in the near-infrared at 2.2, 3.5 and 4.8 μm. These data show the presence of strong near-infrared emission within the central 100 pc around the nucleus. At the K, L and M bands, the dominant emission peak is unresolved at resolutions of 35 pc (K), 15 pc (L) and 23 pc (M). We find that the emission peaks at 2.2, 3.5 and 4.8 μm are offset by 0.3±0.1" south of the HST optical continuum peak. The infrared peaks are coincident with the HST imaging polarimetry center thought to mark the hidden nucleus. We conclude that the infrared emission peaks are also directly related with the hidden nucleus and that they outline the dusty torus around the central engine, as expected from current AGN models. From our first estimate of the fluxes in L and M, we derive a dust temperature of 750 K for the unresolved component. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Spectroscopy at 8–13 μm with T-ReCS on Gemini-S is presented for three galaxies with substantial silicate absorption features, NGC 3094, NGC 7172 and NGC 5506. In the galaxies with the deepest absorption bands, the silicate profile towards the nuclei is well represented by the emissivity function derived from the circumstellar emission from the red supergiant, μ Cephei which is also representative of the mid-infrared absorption in the diffuse interstellar medium in the Galaxy. There is spectral structure near 11.2 μm in NGC 3094 which may be due to a component of crystalline silicates. In NGC 5506, the depth of the silicate absorption increases from north to south across the nucleus, suggestive of a dusty structure on scales of tens of parsecs. We discuss the profile of the silicate absorption band towards galaxy nuclei and the relationship between the 9.7-μm silicate and 3.4-μm hydrocarbon absorption bands.  相似文献   

19.
We present the spatial distribution of the bright near-infrared emission lines, Br, H2, He I, [Fe II], and the CO band longwards of 2.3 m, for the luminous infrared galaxy NGC 1614. The morphology of the ionised gas is different from that of the stellar light, and possibly forms a circumnuclear ring. Our data imply that the stellar population is older and the extinction is lower in the nucleus relative to the surrounding circumnuclear ring. We suggest that NGC 1614 is a galaxy whose recent interaction triggered massive star formation in the nucleus, which in turn caused a radially outward progression of star formation thereby producing the circumnuclear ring we observe today. There is no evidence for a buried AGN, and it is difficult to reconcile our data with the simple evolutionary model of ultraluminous galaxies proposed by Sanders et al (1988).  相似文献   

20.
Our 8-year-long JHKLM photometry of the Seyfert galaxy NGC 1068 has confirmed its IR variability. The amplitudes of the brightness variations in the J (1.25 μm) and K (2.2 μm) bands are within 0 . m 15 and 0 . m 3, respectively, and exceed the observational errors by more than a factor of 5. The nucleus of NGC 1068 is a variable source and can be at different phases of activity. The brightness of the galaxy in all bands except J decreased from 1998 until 2004. In this period, there was a tendency for the J brightness to increase. The variable source in NGC 1068 is a complex structured object. At least two sources radiate in the wavelength range 1.25–5 μm: a hot source whose radiation shows up in the range 1.25–1.65 μm and a cold source radiating at long wavelengths (2.2–5 μm). The color temperature of the hot source increased from 2300 K (the beginning of our observations) to ∼2700 K (the end of our observations). In contrast, the temperature of the cold source decreased by several tens of degrees (in the temperature range 800–900 K). The IR brightness and color variations observed in 1998–2004 are attributable to the dispersal of the dust envelope that formed around the galactic nucleus some 30 years ago and reached its maximum density in 1994–1995. Our analysis of the spectral energy distributions for the galaxy has shown that the observed radiation in the range 1.25–5 μm can be represented as the sum of radiations from two blackbody sources. For the first period of our observations (JD 2451400), the temperatures of the hot and cold sources are ∼3100 and 760 K, respectively. For the second period (JD 2453230), they are ∼3200 and 720 K, respectively. The hot source is relatively compact; it is smaller in size than the cold source by several tens of times. The mean sizes of the hot and cold sources are ∼2.35 × 1016 and ∼7.8 × 1017 cm, respectively. The total mean luminosity of the two sources did not change between the beginning and the end of our observations. The optical depth of the dust envelope averaged over the spectrum of the hot source is τ ∼ 1.5. In 2004, the state of the dust envelope almost returned to its 1974 level, i.e., the dust envelope formation and dispersal cycle was ∼11 000 days (∼30 yr). Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 7, pp. 489–496.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号