首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5±0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5±0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

2.
A dating of two biotite samples taken from the meso- and low-temperature mylonites within the Shangyi-Chicheng fault belt on the north of the North China Craton yields 40Ar/39Ar isotopic ages of (399 ± 1) Ma and (263 ± 2) Ma, respectively. These data reflect an Early Devonian deformation and a Late Carboniferous retrograde metamorphism event along the fault, suggesting that the tectonic activities of the North China Craton in Paleozoic should be reconsidered.  相似文献   

3.
For lack of reliable isotopic chronological data, the metamorphic rock series in the Faku region of northern Liaoning has long been regarded as the platform basement. Recent studies reveal that these deformed and metamorphosed rocks, with a variety of protoliths of plutonic intrusions and supracrustal volcanic and sedimentary rocks, were genetically related to later ductile shearing events, and they, together with the syntectonic intrusions, constituted the large-scale Faku tectonites. In this paper, we report new 40Ar/39Ar data on hornblende, biotite, and K-feldspar from typical granitic mylonites in this suite of tectonites. The plateau age 256 Ma of FK53 hornblende and the high-temperature plateau age 262 Ma of Fk51-1 biotite should represent the cooling ages when the granites, formed as a result of Paleozoic oceanic crustal subduction beneath the continental crust or collision of multiple micro-continental blocks, were exhumed into shallow crustal levels. The plateau age 231 Ma of FK51-1 boitite and the apparent age 227 Ma of Fk51-2 K-feldspar are interpreted to record the time of ductile deformation occurring under greenschist facies conditions, i.e. the formation age of the Faku tectonites, while the age gradient from 197 Ma to 220 Ma of Fk51-2 K-feldspar probably record the subsequent stable uplift-cooling process. The tectonic exhumation event indicated by the plateau age 180 Ma of Fk51-2 K-feldspar may be associated with the onset of paleo-Pacific subduction beneath the North China plate. In addition, the U-Pb dating of FK54 zircon from later-intruded granite yields the age of crystallization of this super-unit intrusion at 159 Ma, thus establishing an upper limit for the formation age of the Faku tectonites, while the plateau age 125 Ma of Fk54 K-feldspar most likely corresponds to the rapid cooling and tectonic denudation event associated with the final collision between the Siberian plate and the North China plate. These isotopic ages provide important geochronological constraints for re-evaluating the tectonic essence of the Faku Faulted Convex and ascertaining the suturing boundary between the North China Platform and the Xingmeng Fold System.  相似文献   

4.
The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-metasomatism in this gold deposit, some metasomatic K-feldspars from K-altered rocks are selected to measure their formation time by laser probe 40Ar-39Ar dating method. The new analyzing data show that these metasomatic K-feldspar formed during 202.6 Ma and 176.7 Ma, and the corresponding K-metasomatism and associated gold mineralization occurred in the early stage of Mesozoic era. The pulse intervals of K-metasomatism in the Hougou area are estimated to be about 4 Ma.  相似文献   

5.
The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925±66 years in 2004 (1σ uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes.  相似文献   

6.
40Ar/39Ar ages and paleomagnetic correlations using characteristic remanent magnetizations (ChRM) show that two main ignimbrite sheets were deposited at 4.86 ± 0.07 Ma (La Joya Ignimbrite: LJI) and at 1.63 ± 0.07 Ma (Arequipa Airport Ignimbrite: AAI) in the Arequipa area, southern Peru. The AAI is a 20–100 m-thick ignimbrite that fills in the Arequipa depression to the west of the city of Arequipa. The AAI is made up of two cooling units: an underlying white unit and an overlying weakly consolidated pink unit. Radiometric data provide the same age for the two units. As both units record exactly the same well-defined paleomagnetic direction (16 sites in the white unit of AAI: Dec = 173.7; Inc = 31.2; α95 = 0.7; k = 2749; and 10 sites in the pink unit of AAI; Dec = 173.6; Inc = 30.3; α95 = 1.2; k = 1634), showing no evidence of secular variation, the time gap between emplacement of the two units is unlikely to exceed a few years. The >50 m thick well-consolidated white underlying unit of the Arequipa airport ignimbrite provides a very specific magnetic zonation with low magnetic susceptibilities, high coercivities and unblocking temperatures of NRM above 580°C indicating a Ti-poor titanohematite signature. The Anisotropy of Magnetic Susceptibility (AMS) is strongly enhanced in this layer with anisotropy values up to 1.25. The fabric delineated by AMS was not recognized neither in the field nor in thin sections, because most of the AAI consists in a massive and isotrope deposit with no visible textural fabric. Pumices deformation due to welding is only observed at the base of the thickest sections. AMS within the AAI ignimbrite show a very well defined pattern of apparent imbrications correlated to the paleotopography, with planes of foliation and lineation dipping often at more than 20° toward the expected vent, buried beneath the Nevado Chachani volcanic complex. In contrast with the relatively small extent of the thick AAI, the La Joya ignimbrite covers large areas from the Altipano down the Piedmont. Ti-poor titanomagnetites are the dominant magnetic carriers and AMS values are generally lower than 1.05. Magnetic foliations are sub horizontal and lineations directions are scattered in the LJI. The AMS fabrics are probably controlled by post-depositional compaction and welding of the deposit rather than transport dynamics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.  相似文献   

8.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

9.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

10.
Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30–40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550–250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most anorthoclase-phyric lavas, characteristic of Mt. Erebus, are less than 250 ka. All Mt. Erebus flows between about 250 and 90 ka are anorthoclase tephriphonolite in composition.Editorial responsibility: J. Donelly-Nolan  相似文献   

11.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

12.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

13.
The integration of structural analyses with 40Ar/39Ar dating of fault-related pseudotachylytes provides time constraints for the reconstruction of the Alpine evolution of the central portion of the South Alpine orogenic wedge. In the northern sector of the belt a Variscan basement is stacked southward on the Permian to Mesozoic cover along regional faults (Orobic and Porcile thrusts). Fault zones, slightly postdating a first folding event of Alpine age, experienced a complex evolution through the ductile and brittle deformation regime, showing greenschist facies mylonites overprinted by a penetrative cataclastic deformation. Generation of fault-related pseudotachylyte veins marks the onset of brittle conditions, lasting up to the youngest episodes of fault activity. 40Ar/39Ar dating of the pseudotachylyte matrix of 9 samples give two separated age clusters: Late Cretaceous (80–68 Ma) and latest Palaeocene to Middle Eocene (55–43 Ma). These new data provide evidence that the pre-Adamello evolution of the central Southern Alps was characterised by the superposition of different tectonic events accompanying the exhumation of the deepest part of the belt through the brittle–ductile transition. The oldest pseudotachylyte ages demonstrate that south-verging regional thrusting in the central Southern Alps was already active during the Late Cretaceous, concurrently with the development of a synorogenic foredeep basin where the Upper Cretaceous Lombardian Flysch was deposited.  相似文献   

14.
We report the first 39Ar–40Ar ages from the three early basic shield-like massifs of Tenerife, Canary islands, and couple these with detailed major and trace element chemistry to constrain the nature and timing of the mantle melting processes. The massifs have chemically different sources, and independent evolutionary histories. The Teno and Roque del Conde massifs appear chemically to represent the products of single mantle melting cycles, with progressive decrease in mean melt fraction and increase in mean melting depth in younger rocks. The Teno massif (NW) was erupted in a short time period around 6.0–6.4 Ma, while at least the lower half of the Roque del Conde massif (SW) is older than 11 Ma. In contrast, the Anaga massif (NE) is polygenetic, with 39Ar–40Ar ages ranging from 8.0–4.2 Ma, and no simple stratigraphic chemical progression. These ages run counter to published suggestions of progressive younging of Canary shield stages to the southwest. Basic rocks in all three massifs are the result of much deeper melting and smaller melt fractions than equivalent units in Gran Canaria, but nevertheless the melting column must have extended significantly into the spinel facies, requiring substantial disruption of the local lithosphere. The age and melting relationships broadly support the mantle blob model for Canary magmatism proposed by Hoernle and Schmincke (Hoernle, K., Schminke, H.-U., 1993. The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J. Petrol. 34, 599–626). In all three massifs, extensive fractional crystallisation has taken place at crustal levels so that mean MgO contents are only some 6–7%. The fractionation sequence is olivine–clinopyroxene–magnetite in basaltic compositions, with the involvement of plagioclase, amphibole and apatite only to generate the infrequent more evolved hawaiites to benmoreites. Despite the abundance of basanitic magmas in the Tenerife older massifs, these follow a differentiation trend towards weakly undersaturated benmoreite rather than to phonolite. This probably reflects early crystallisation of magnetite, perhaps resulting from somewhat high oxygen fugacity. The chemical evidence for replenished magma chambers in Tenerife described by Neumann et al. (Neumann, E.R., Wulff-Oedersen, E., Simonsen, S.L., Pearson, N.J., Martí, J., Mitjavila, J., 1999. Evidence for fractional crystallisation of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol. 40, 1089–1123) is a consequence of treating as a single cogenetic suite the products of several magmatic systems that differ in parental melt fraction.  相似文献   

15.
We present new 40Ar/39Ar data for sanidine and biotite derived from volcanic ash layers that are intercalated in Pliocene and late Miocene astronomically dated sequences in the Mediterranean with the aim to solve existing inconsistencies in the intercalibration between the two independent absolute dating methods. 40Ar/39Ar sanidine ages are systematically younger by 0.7-2.3% than the astronomical ages for the same ash layers. The significance of the discrepancy disappears except for the upper Ptolemais ashes, which reveal the largest difference, if an improved full error propagation method is applied to calculate the absolute error in the 40Ar/39Ar ages. The total variance is dominated by that of the activity of the decay of 40K to 40Ar (∼70%) and that the amount of radiogenic 40Arp in the primary standard GA1550 biotite (∼15%). If the 40Ar/39Ar ages are calculated relative to an astronomically dated standard, the influence of these parameters is greatly reduced, resulting in a more reliable age and in a significant reduction of the error in 40Ar/39Ar dating.Astronomically calibrated ages for Taylor Creek Rhyolite (TCR) and Fish Canyon Tuff (FCT) sanidine are 28.53±0.02 and 28.21±0.04 Ma (±1 S.E.), respectively, if we start from the more reliable results of the Cretan A1 ash layer. The most likely explanation for the large discrepancy found for the younger Ptolemais ash layers (equivalent to FCT of 28.61 Ma) is an error in the tuning of this part of the sequence.  相似文献   

16.
Eighty-nine basaltic lava flows from the northwest wall of Haleakala caldera preserve a concatenated paleomagnetic record of portions of the Matuyama-Brunhes (M-B) reversal and the preceding Kamikatsura event as well as secular variation of the full-polarity reversed and normal geomagnetic field. They provide the most detailed volcanic record to date of the M-B transition. The 24 flows in the transition zone show for the first time transitional virtual geomagnetic poles (VGPs) that move from reverse to normal along the Americas, concluding with an oscillation in the Pacific Ocean to a cluster of VGPs east of New Zealand and back finally to stable polarity in the north polar region. All but one of the 16 Kamikatsura VGPs cluster in central South America. The full-polarity flows, with 40Ar/39Ar ages spanning a total of 680 kyr, pass a reversal test and give an average VGP insignificantly different from the rotation axis, with standard deviation consistent with that for other 0-5 Ma lava flows of similar latitude. Precise 40Ar/39Ar dating consisting of 31 incremental heating experiments on 12 transitional flows yields weighted mean ages of 775.6±1.9 and 900.3±4.7 ka for the M-B and Kamikatsura transitional flows, respectively. This Matuyama-Brunhes age is ∼16 kyr younger than ages for M-B flows from the Canary Islands, Tahiti and Chile that were dated using exactly the same techniques and standards, suggesting that this polarity transition may have taken considerably longer to complete and been more complex than is generally believed for reversals.  相似文献   

17.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

18.
Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of C02 and He, high3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the main frequency, -3.4%— 4.6%), showing no difference from the tectonic framework of the area. In the area, the tectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.  相似文献   

19.
To evaluate influence of chemical weathering of the Qinghai-Tibet Plateau (QTP) on seawater 87Sr/86Sr variation, river water and sediment samples were collected, and their Sr concentrations and isotopic compositions analyzed, from the seven large rivers that originated from the QTP. By combining these with the data of the Ganges, Brahmaputra, Indus and Irrawaddy originated in the southern QTP, the total Sr flux of the eleven rivers reaches 3.47×109 mol·a−1, which accounts for 10.2% of the total Sr flux transported by the global rivers. The weighted mean 87Sr/86Sr is 0.71694, higher than the average value of the global rivers. The 87Srex (87Sr flux in excess of the seawater 87Sr/86Sr ratio) of the Chinese seven rivers is 1.55×106 mol·a−1, only accounting for about 6% of the value of the eleven rivers originated from QTP, and the Ganges-Brahmaputra system accounts for 86%. We assume that the QTP rivers have no strontium contributions to the oceans before ∼40 Ma and the Sr fluxes of the global rivers, except the QTP eleven rivers, are constant, then a maximum linear increase in Sr fluxes of the QTP rivers from zero to the modern value in response to tectonic uplift can explain ∼69% increase of seawater 87Sr/86Sr over the past ∼40 Ma and the remainder of 31% is perhaps provided from other factors. Supported by National Natural Science Foundation of China (Grant Nos. 40473009, 40331001, 40873001)  相似文献   

20.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号