首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Western Ghats plays a pivotal role in determining the hydrological and hydroclimatic regime of Peninsular India. The mountainous catchments of the Ghats are the primary contributors of flow in the rivers that sustains the life and agricultural productivity in the area. Although many studies have been conducted in the past decades to understand long term trends in the meteorological and hydrological variables of major river basins, not much attention have been made to unfold the relationship existing among rainfall and river hydrology of natural drainages on either side of the Western Ghats which host one of the unique biodiversity hotspots across the world. Therefore, an attempt has been made in this paper to examine the short term (last three decades) changes in the rainfall pattern and its influence on the hydrological characteristics of some of the important rivers draining the southern Western Ghats as a case study. The short term, annual and seasonal trends in the rainfall, and its variability and discharge were analyzed using Mann-Kendall test and Sen’s estimator of slope. The study showed a decreasing trend in rainfall in the southwest monsoon while a reverse trend is noticed in northeast monsoon. Correspondingly, the discharge of the west and east flowing rivers also showed a declining trend in the southwest monsoon season. The runoff coefficient also followed the trends in the discharge. The runoff coefficient of the Periyar river showed a decreasing trend, whereas the Cauvery river exhibited an increasing trend. A high-resolution analysis of rainfall data revealed that the number of moderate rainfall events showed a decreasing trend throughout the southern Western Ghats, whereas the high intensity rainfall events showed an opposite trend. The decline in groundwater level in the areas which recorded an increase in high intensity rainfall events and decrease in moderate rainfall events showed that the groundwater recharge process is significantly affected by changes in the rainfall pattern of the area.  相似文献   

2.
Mumbai City, situated on the western Indian coast, is well known for exposures of late-stage Deccan pillow basalts and spilites, pyroclastic rocks, rhyolite lavas, and trachyte intrusions. These rock units, and a little-studied sequence of tholeiitic flows and dykes in the eastern part of Mumbai City, constitute the west-dipping limb of a regional tectonic structure called the Panvel flexure. Here we present field, petrographic, major and trace element and Sr–Nd isotopic data on these tholeiitic flows and dykes, best exposed in the Ghatkopar–Powai area. The flows closely resemble the Mahabaleshwar Formation of the thick Western Ghats sequence to the east, in Sr–Nd isotopic ratios and multielement patterns, but have other geochemical characteristics (e.g., incompatible trace element ratios) unlike the Mahabaleshwar or any other Formation. The flows may have originated from a nearby eruptive center, possibly offshore of Mumbai. Two dykes resemble the Ambenali Formation of the Western Ghats in all geochemical characteristics, though they may not represent feeders of the Ambenali Formation lavas. Most dykes are distinct from any of the Western Ghats stratigraphic units. Some show partial (e.g., Sr–Nd isotopic) similarities to the Mahabaleshwar Formation, and these include several dykes with unusual, concave-downward REE patterns suggesting residual amphibole and thus a lithospheric source. The flows and dykes are inferred to have undergone little or no contamination, by lower continental crust. Most dykes are almost vertical, suggesting emplacement after the formation of the Panvel flexure, and indicate considerable east–west lithospheric extension during this late but magmatically vigorous stage of Deccan volcanism.  相似文献   

3.
Aquatic Geochemistry - Studies done on small tropical west-flowing river catchments located in the Western Ghats in southwestern India have suggested very intense chemical weathering rates and...  相似文献   

4.
Weathering and landslide occurrences in parts of Western Ghats,Kerala   总被引:2,自引:0,他引:2  
The climatic condition of Western Ghats has influenced the process of weathering and landslides in this mountainous tract along the southwest coast of India. During the monsoon period, landslides are a common in the Western Ghats, and its intensity depends upon the thickness of the loose unconsolidated soil formed by the process of weathering. Debris landslides with a combination of saprock, saprolite and soil, indicate the role of weathering in landslide occurrences. This paper reports on how the weathering in the windward slope of Western Ghats influences the occurrence of landslides and the factors which accelerate the weathering process. Rock and soil samples were collected from the weathering profile of hornblende gniess and granite gneiss. The chemical analysis and the calculated Chemical Index of Alteration (CIA) indicate the significant weathering and its possible influence on landslide occurrences in the study area. Mainly, the CIA value of lateritic soil and forest loam indicated the extent of high chemical weathering in this region. Rainfall is the dominant parameter influencing the chemical weathering process. In addition, deforestation, land use practices and soil erosion are some of the other important factors accelerating the weathering process and landslide occurrences in the region. The locations of the previous landslides superimposed on geology and soil show that most of the landslide occurrences are associated with the highly weathered zone, particularly lateritic soil and the ‘severe’ (rock outcrop) erodability zone.  相似文献   

5.
Earth Observation with large suite of sensors and with capabilities to address natural resources at multiple scales has proven to be a critical resource in setting conservation priorities of a region. The role of earth observation data was recognized towards achieving international biodiversity targets by 2020. Ecosystem irreplaceability and ecosystem vulnerability are two concepts key to understanding and preparing conservation priority maps. This study presents spatial conservation prioritization analysis for forests of ‘Western Ghats biodiversity hotspot’. Earth observation data products have been used for prioritization of areas of irreplaceability and vulnerability that are significant for conservation planning. The spatial surrogates of biodiversity in terms of very dense forest, biological richness, intactness and rarity of habitat are analyzed for evaluation of ecosystem irreplaceability. Fragmentation, forest fires, plant invasion and disturbance index are surrogates included for spatial analysis of ecosystem vulnerability. Vegetation type wise analysis indicates dry deciduous forests are under high vulnerability, followed by moist deciduous forests. The high concentration of irreplaceability is observed in Shola followed by wet evergreen forests and semi-evergreen forests. Spatial prioritization approach has identified about 18% of the forest area as irreplaceable which represents overlapped area of very dense forest, shola, intact forest and high biological richness. We observed that the overlap of forest areas of irreplaceability with vulnerability in southern Western Ghats, which needs high priority of conservation. This study is the first of its kind wherein multi-source earth observation data has been analysed to examine the quantitative criteria at regional level in Western Ghats.  相似文献   

6.
Kerala is the third most densely populated state in India. It is a narrow strip of land, of which 47% is occupied by the most prominent orographic feature of peninsular India, The Western Ghats mountain chain. The highlands of Kerala experience several types of landslides, of which debris flows are the most common. They are called “Urul Pottal” in the local vernacular. The west-facing Western Ghats scarps that runs the entire extent of the mountain system is the most prone physiographic unit for landslides. The highlands of the region experience an annual average rainfall as high as 500 cm through the South-West, North-East and Pre-Monsoon showers. A survey of ancient documents and early news papers indicates a reduced rate of slope instability in the past. The processes leading to landslides were accelerated by anthropogenic disturbances such as deforestation since the early 18th century, terracing and obstruction of ephemeral streams and cultivation of crops lacking capability to add root cohesion in steep slopes. The events have become more destructive given the increasing vulnerability of population and property. Majority of mass movements have occurred in hill slopes >20° along the Western Ghats scarps, the only exception being the coastal cliffs. Studies conducted in the state indicates that prolonged and intense rainfall or more particularly a combination of the two and the resultant pore pressure variations are the most important trigger of landslides. The initiation zone of most of the landslides was typical hollows generally having degraded natural vegetation. A survey of post-landslide investigation and news paper reports enabled the identification of 29 major landslide events in the state. All except one of the 14 districts in the state are prone to landslides. Wayanad and Kozhikode districts are prone to deep seated landslides, while Idukki and Kottayam are prone to shallow landslides.  相似文献   

7.
A new map of structural architecture has been compiled involving modern mapping techniques at the cratonmobile belt interface in the Western Ghats around the Coorg granulite massif revealing the occurrence of important shear zones. The shear zones are linked to the Moyar-Bhavani Shear Zone in Southern India. The nature, geometry and kinematics of the shear zones in the granulitic crust and the cratonic part are distinctly different.  相似文献   

8.
Western Ghats are considered as one of the global biodiversity hotspots. There is an information gap on conservation status of the biodiversity hotspots. This study has quantified estimates of deforestation in the Western Ghats over a period of past nine decades. The classified forest cover maps for 1920, 1975, 1985, 1995, 2005 and 2013 indicates 95,446 (73.1%), 63,123 (48.4%), 62,286 (47.7%), 61,551 (47.2%), 61,511 (47.1%) and 61,511 km2 (47.1%) of the forest area, respectively. The rates of deforestation have been analyzed in different time phases, i.e., 1920–1975, 1975–1985, 1985–1995, 1995–2005 and 2005–2013. The grid cells of 1 km2 have been generated for time series analysis and describing spatial changes in forests. The net rate of deforestation was found to be 0.75 during 1920–1975, 0.13 during 1975–1985, 0.12 during 1985–1995 and 0.01 during 1995–2005. Overall forest loss in Western Ghats was estimated as 33,579 km2 (35.3% of the total forest) from 1920’s to 2013. Land use change analysis indicates highest transformation of forest to plantations, followed by agriculture and degradation to scrub. The dominant forest type is tropical semi-evergreen which comprises 21,678 km2 (35.2%) of the total forest area of Western Ghats, followed by wet evergreen forest (30.6%), moist deciduous forest (24.8%) and dry deciduous forest (8.1%) in 2013. Even though it has the highest population density among the hotspots, there is no quantifiable net rate of deforestation from 2005 to 2013 which indicates increased measures of conservation.  相似文献   

9.
10.
The Eastern Ghats are a prominent topographic feature on the Indian Peninsula, stretching from the southern tip of the peninsula to near Bhubaneswar (20°N, 86°E) along the east coast. The belt is characterised by occurrences of high grade metamorphic rocks such as pyroxene granulites, sillimanite gneisses, charnockites and gabbro-anorthosite masses. The gravity field over the Eastern Ghats is appreciably positive as compared to the surrounding low grade gneissic terrain.Analysis of the gravity field along the coastal and southern granulite terrain comprising the Eastern Ghats shows that a large number of gravity highs are associated with charnockites of basic and intermediate nature as well as gabbro-anorthosite masses. The lows appear to be associated with acid charnockites, syenite masses or granitic intrusives.The boundary between the Eastern Ghats terrain and the adjoining Dharwar/Bastar cratons appears to be a faulted one. The crust underneath the Eastern Ghats is inferred to be of a higher density than that of the Dharwar/Bastar cratons to its west. The gravity field over the Eastern Ghats is compared to that of similar terrains in other parts of the world. It is inferred that the Eastern Ghats are characterised by a crust of higher than normal density.  相似文献   

11.
Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.  相似文献   

12.
The study was carried out with an aim to assess the heavy metal (HM) and polycyclic aromatic hydrocarbons (PAHs) in the air of a biodiversity as well as tourist-rich area of Western Ghats by applying a most frequent growing lichen Remototrachyna awasthii (Hale and Patw.) Divakar and A. Crespo, as biomonitor. Thalli of R. awasthii were collected from eight sites of Mahabaleshwar area located in Western Ghats. Samples were prepared for HM and PAHs quantification by ICP-MS and HPLC, respectively. Total metal concentration (HM) ranged from 644 to 2,277.5 μg g?1 while PAHs concentration between 0.193 and 54.78 μg g?1. HM and PAHs concentrations were the highest at Bus Stand while control site (Lingmala Fall) exhibited the lowest concentration of HM as well as PAHs followed by samples from Wilson point (both these sites are having trekking route). It was also evident from this study that vehicular emission played a significant role in the release of HM and PAHs as pollutants in the environment. The effectiveness of R. awasthii as biomonitor could be further investigated by comparing this species with other biomonitors.  相似文献   

13.
《International Geology Review》2012,54(11):1007-1016
A randomly oriented dike swarm in the Western Ghats region has been postulated to be the feeder dike swarm of the ~2 km thick sequence exposed in that region of the Deccan province, and interpreted as evidence for the lack of crustal extension before this major flood basalt event. An enormous, central shield volcano has also been postulated in the same region based on flow stratigraphic studies and the randomly oriented dikes. These interpretations are subject to numerous objections and the lack of crustal extension before Deccan volcanism is not supported by presently available data. Rift zones of the province and the western Indian continental margin remain highly probable source areas for large volumes of the Deccan lavas.  相似文献   

14.
We report here a40Ar-39Ar age of 66.0 ± 0.9 Ma (2σ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2 km thick bottom part of the exposed basalt flow sequence in the Western Ghats was extruded very close to 67.4 Ma.  相似文献   

15.
Magnetotelluric (MT) studies along a few traverses, some cutting across the Western Ghats, during the last few years have provided basic insights into the shallow as well as the deeper electrical structure in the regions near and east of the Western Ghat belt. The MT models broadly show a two layered lithospheric electrical structure with an upper high resistive layer (several thousands of Ωm) and a lower moderately conductive layer (a few tens to a few hundred Ωm). The depth of the interface between the two layers is found to vary from about 120–160 km in the south in the SGT to around 80 km in the north in the northern DVP. Another impressive feature that could be noticed in these electrical models is the presence of well-defined major near vertical crustal conductive feature associated with the region of Western Ghat belt, presumably associated with the tectonic evolution of the Western Ghats. Further, these models also brought out several other well-defined conductors that might be linked to structural features like faults, shear zones, etc., in the region. These conductors pierce through the crustal column and some of these, particularly those oriented in NW-SE direction, i.e., oriented transversely with respect to the ambient compressive stress direction of the Indian shield, assume significance in understanding the seismicity of the region.  相似文献   

16.
The present study deals with the discharge characteristics, major ion chemistry as well as particulate and dissolved sediment transport of the Bharathapuzha river flowing across the Western Ghats through the Palghat gap - a prominent break in the Western Ghats that acts as a climate corridor in the region. While the western part of the basin in Kerala exhibits a wetter/humid climate, the eastern part in Tamil Nadu experiences a semi-arid climate. This peculiar climatic condition together with human interventions has a decisive role on the discharge characteristics as well as catchment erosion of the river basin. The dissolved and particulate contents of the river waters were found to be directly related to the geo-environmental settings of the river catchments. An intercomparison of elemental loading in the river waters in different seasons reveals notable decrease in monsoon compared to nonmonsoon seasons, which is attributed mainly to dilution of the solute contents by monsoon precipitation. The bivariate plots of Na/(Na+Ca) vs Total Dissolved Solids (TDS) and Cl/(Cl+HCO3) vs TDS spread generally in the rock dominance sector of Gibb’s model indicating the role of chemical weathering in contributing to the major ion chemistry of the Bharathapuzha river. The intensity of weathering varied significantly among the different sub-basins of the Bharathapuzha river basin. The higher particulate load by dissolved load ratio of the Thuthapuzha and Gayathripuzha tributaries draining the humid areas compared to the Chitturpuzha tributary draining the semi-arid zones of the basin indicates the predominance of physical weathering in the former two sub-basins than the latter.  相似文献   

17.
The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ensemble in the interior segments of the Eastern Ghats belt could not possibly be related to the rift-system, assumed for the western margin of the Eastern Ghats belt. Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated calc-alkaline suite. Isotopic data for the Koraput complex indicate ca. 917 Ma alkaline magmatism from a depleted mantle source and postcrystalline thermal overprint at ca. 745 Ma, also recorded from sheared metapelitic country rocks. The calc-alkaline magmatism of the Rairakhol complex occurred around 938 Ma, from an enriched mantle source, closely following Grenvillian granulite facies imprint in the charnockitic country rocks.  相似文献   

18.
The Western Ghats (WG), a topographic scarp facing towards the west coast of India and extending over diverse geological terranes – Deccan Volcanic Province (DVP), Dharwar Craton (DC) and Southern Granulite Terrain (SGT), is an enigmatic geomorphic feature. WG is characterized by low gravity anomalies. In order to decipher the sources of gravity anomalies, we have decomposed the gravity anomalies using wavelength filter and have obtained estimates of the depth to crust-mantle boundary (CMB) under WG and surrounding regions from the inversion of gravity data, which is compared with seismically determined CMB estimates. Overall, the CMB depth varies from 33 to 50 km, which is consistent with seismically determined values, except in the region of shear zones between DC and SGT probably indicating a different density contrast at CMB. The major source of gravity low is found to be the deepening of CMB under the WG compared to adjacent regions regardless of surface lithology. The CMB depths under WG and surrounding region generally approximate the CMB depths estimated for low strength flexural isostatic models, which suggests that flexural compensation of uplifted topography, later modified by tectonic and denudation processes, is a likely development model for the Western Ghats.  相似文献   

19.
Generation of Deccan Trap magmas   总被引:1,自引:0,他引:1  
Deccan Trap magmas may have erupted through multiple centers, the most prominent of which may have been a shield volcano-like structure in the Western Ghats area. The lavas are predominantly tholeiitic; alkalic mafic lavas and carbonatites are rare. Radioisotope dating, magnetic chronology, and age constraints from paleontology indicate that although the eruption started some 68 Ma, the bulk of lavas erupted at around 65–66 Ma. Paleomagnetic constraints indicate an uncertainty of ± 500,000 years for peak volcanic activity at 65 m.y. in the type section of the Western Ghats. Maximum magma residence times were calculated in this study based on growth rates of “giant plagioclase” crystals in lavas that marked the end phase of volcanic activity of different magma chambers. These calculations suggest that the > 1.7 km thick Western Ghats section might have erupted within a much shorter time interval of ∼ 55,000 years, implying phenomenal eruption rates that are orders of magnitude larger than any present-day eruption rate from any tectonic environment. Other significant observations/conclusions are as follows: (1) Deccan lavas can be grouped into stratigraphic subdivisions based on their geochemistry; (2) While some formations are relatively uncontaminated others are strongly contaminated by the continental crust; (3) Deccan magmas were produced by 15–30% melting of a Fe-rich lherzolitic source at ∼ 3–2 GPa; (4) Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16%MgO, 47%SiO2; (5) Deccan magmas were generated much deeper and by significantly more melting than other continental flood basalt provinces; (6) The erupted Deccan tholeiitic lavas underwent fractionation and magma mixing at ∼ 0.2 GPa. The composition and origin of the crust and crust/mantle boundary beneath the Deccan are discussed with respect to the influence of Deccan magmatic episode.  相似文献   

20.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号