首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We analyse the potential impacts of sea-level rise on the management of saline coastal wetlands in the Hunter River estuary, NSW, Australia. We model two management options: leaving all floodgates open, facilitating retreat of mangrove and saltmarsh into low-lying coastal lands; and leaving floodgates closed. For both management options we modelled the potential extent of saline coastal wetland to 2100 under a low sea-level rise scenario (based on 5 % minima of SRES B1 emissions scenario) and a high sea-level rise scenario (based on 95 % maxima of SRES A1FI emissions scenario). In both instances we quantified the carbon burial benefits associated with those actions. Using a dynamic elevation model, which factored in the accretion and vertical elevation responses of mangrove and saltmarsh to rising sea levels, we projected the distribution of saline coastal wetlands, and estimated the volume of sediment and carbon burial across the estuary under each scenario. We found that the management of floodgates is the primary determinant of potential saline coastal wetland extent to 2100, with only 33 % of the potential wetland area remaining under the high sea-level rise scenario, with floodgates closed, and with a 127 % expansion of potential wetland extent with floodgates open and levees breached. Carbon burial was an additional benefit of accommodating landward retreat of wetlands, with an additional 280,000 tonnes of carbon buried under the high sea-level rise scenario with floodgates open (775,075 tonnes with floodgates open and 490,280 tonnes with floodgates closed). Nearly all of the Hunter Wetlands National Park, a Ramsar wetland, will be lost under the high sea-level rise scenario, while there is potential for expansion of the wetland area by 35 % under the low sea-level rise scenario, regardless of floodgate management. We recommend that National Parks, Reserves, Ramsar sites and other static conservation mechanisms employed to protect significant coastal wetlands must begin to employ dynamic buffers to accommodate sea-level rise change impacts, which will likely require land purchase or other agreements with private landholders. The costs of facilitating adaptation may be offset by carbon sequestration gains.  相似文献   

2.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

3.
This Special Issue deals with the impact of climate change on western European coastal systems. Notwithstanding the inherent problems of studying geological data in terms of climate shifts, the results show that on the meso- and the macroscale of time, climatic forcing is a major drive for coastal change. However, its impact is largely influenced by other factors. Sediment availability plays a dominant role in the evolution of coastal systems and it can be considered one of the most important thresholds at the land-ocean interface. Sea-level changes are expected to have a significant impact on most European coasts. There is particular concern for the tidally influenced flats and marshes, and for those coastal areas known to have already a net sediment deficit and to be threatened by erosion. Areas where isostatic uplift has countered sea-level rise until now, are expected to become subject to coastal erosion in the near future under an accelerated sea-level rise scenario. The sensitivity and vulnerability of coastal systems to climate shifts is shown to be largely controlled by storm magnitude and fetch. A particular case of vulnerability is the impact of tsunamis. Finally, the consequences of human interference have been demonstrated in many cases. The implementation of geoscientific studies for rational, comprehensive and cost-effective strategies on a regional or national level of integrated coastal zone management is reviewed.  相似文献   

4.
The United States’ deeply racialized history currently operates below the surface of contemporary apolitical narratives on vulnerability mitigation and adaptation to sea-level rise. As communities, regulatory agencies, and policy-makers plan for rising seas, it is important to recognize the landscapes of race and deep histories of racism that have shaped the socio-ecological formations of coastal regions. If this history goes unrecognized, what we label colorblind adaptation planning is likely to perpetuate what Rob Nixon calls the “slow violence” of environmental racism, characterized by policies that benefit some populations while abandoning others. By colorblind adaptation planning, we refer to vulnerability mitigation and adaptation planning projects that altogether overlook racial inequality—or worse dismiss its systemic causes and explain away racial inequality by attributing racial disparities to non-racial causes. We contend that responses to sea-level rise must be attuned to racial difference and structures of racial inequality. In this article, we combine the theory of racial formation with the geographical study of environmental justice and point to the ways racial formations are also environmental. We examine vulnerability to sea-level rise through the process of racial coastal formation on Sapelo Island, Georgia, specifically analyzing its deep history, the uneven racial development of land ownership and employment, and barriers to African American participation and inclusion in adaptation planning. Racial coastal formation’s potential makes way for radical transformation in climate change science not only in coastal areas, but other spaces as situated territorial racial formations.  相似文献   

5.
《China Geology》2019,2(1):26-39
Bulletins of China’s National Sea Level show that the average rising rate of sea-levels in China is 3.3 mm/a over the past 40 years, with an obviously accelerated rising trend in the last decade. The rate of relative sea-level rise of the Yangtze River Delta reached >10 mm/a after considering the land subsidence, and Bohai Bay is even greater than 25 mm/a. The impact of the sea level rise to the coastal area will be greater in the coming years, so carrying out an assessment of this rising trend is urgent. This paper, taking the coastal area of Tianjin and Hebei as examples, comprehensively evaluates the impact of sea-level rise through multitemporal remote sensing shoreline interpretation, ground survey verification, elevation measurements for both seawall and coastal lowlands. The results show that the average elevation of the measured coastal areas of Tianjin and Hebei is about +4 m, and the total area of >100 km2 is already below the present mean sea level. More than 270 km, ca. 31% of the total length of the seawall, cannot withstand a 1-in-100-year storm surge. Numerical simulations of the storm flooding on the west coast of Bohai Bay, for 1-in-50-years, 1-in-100-years, 1-in-200-years and 1-in-500-years, show that if there were no coastal dykes, the maximum flooding area would exceed 3000 km2, 4000 km2, 5300 km2 and 7200 km2, respectively. The rising sea has a direct and potential impact on the coastal lowlands of Tianjin and Hebei. Based on the latest development in international sea-level rise prediction research, this paper proposes 0.5 m, 1.0 m and 1.5 m as low, middle and high sea level rise scenarios by 2100 for the study area, and combines the land subsidence and other factors to the elevation of the existing seawall. Comprehensive evaluation results indicate that even in the case of a low scenario, the existing seawall will not be able to withstand a 1-in-100-years storm surge in 2030, and the potential flooding areas predicted by the model will become a reality in the near future. Therefore, the seawall design in the coastal areas of Tianjin and Hebei must consider the combined effects of land subsidence, sea level rise and the extreme storm surges caused by it.©2019 China Geology Editorial Office.  相似文献   

6.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively.Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

7.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively. Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

8.
Coastal megacities and climate change   总被引:8,自引:0,他引:8  
Rapid urbanization is projected to produce 20 coastal megacities (population exceeding 8 million) by 2010. This is mainly a developing world phenomenon: in 1990, there were seven coastal megacities in Asia (excluding those in Japan) and two in South America, rising by 2010 to 12 in Asia (including Istanbul), three in South America and one in Africa.All coastal locations, including megacities, are at risk to the impacts of accelerated global sea-level rise and other coastal implications of climate change, such as changing storm frequency. Further, many of the coastal megacities are built on geologically young sedimentary strata that are prone to subsidence given excessive groundwater withdrawal. At least eight of the projected 20 coastal megacities have experienced a local orrelative rise in sea level which often greatly exceeds any likely global sea-level rise scenario for the next century.The implications of climate change for each coastal megacity vary significantly, so each city requires independent assessment. In contrast to historical precedent, a proactive perspective towards coastal hazards and changing levels of risk with time is recommended. Low-cost measures to maintain or increase future flexibility of response to climate change need to be identified and implemented as part of an integrated approach to coastal management.  相似文献   

9.
To avoid dominant positivist explanations of links between climate change and security, I use alternative, human security approaches to study how climate security is managed in one of Spain’s most endangered coastal ecosystems, the Ebro Delta. I find that increasing the downstream flow of sediments retained in upstream dams is a crucial measure for dealing with climate change threats (sea-level rise) in the Delta. Yet, state policies do not increase sediment flow, but instead implement incremental adaptation at the site of climate impact (coast), which, at times, requires executing small-scale land expropriations. Refraining from improving human security via increasing sediment flow benefits corporate interests upstream. At the same time, expropriation silences mild farmer protest downstream and adds insult to injury by conveying to farmers a sense of blame for their vulnerability to climate change. Meanwhile, using expropriation at the service of incremental adaptation goes against the very rationale of expropriation established by Spanish legislation and creates a fundamental contradiction between what the practice is meant to deliver, namely security and the social contract from the part of the state, and what it actually does, i.e. permit the state to evade providing human security. I conclude that, under climate change, achieving human security, the delivery of the social contract, and corporate rent-seeking at the same time may not be possible. Moreover, rather than the social contract been threatened by state incapacity to respond to the effects of climate change and breached social contract expectations of vulnerable communities, it is the actual mobilisation of the contract in order to respond to climate change that diminishes human security.  相似文献   

10.
Many salt marshes throughout southern New England are exhibiting a trend toward submergence, as reported in this volume and other published literature. This paper provides a brief perspective on sea-level rise and the many other interacting factors that contribute to marsh submergence in this and other regions. Curtailing nutrient loading and removing or altering barriers (e.g., dams, dikes) to the delivery of suspended sediment to marshes are discussed as management or restoration techniques to consider for increasing long-term sustainability of marshes. Adaptation measures are many (e.g., thin-layer sediment application to marsh surface, facilitation of landward marsh migration, shoreline stabilization), but all require study to evaluate their potential for enhancing resilience. Research, monitoring, and dynamic modeling, coupled with appropriate management and adaptation approaches implemented at local and regional scales, will contribute to the challenge of sustaining salt marshes in an uncertain future of sea-level rise, other climate factors, and stressors associated with a developing coastal zone.  相似文献   

11.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

12.
Sea Level Rise and Its Risk Management   总被引:2,自引:0,他引:2  
Sea level rise is among the most severe societal consequences of anthropogenic climate change. Significant advance has been achieved in recent years in the study of future sea level rise and its risk management practice: ①Sea level rise is considered as a kind of hazard,its future plausible scenarios and their probabilities are necessary to be predicted and estimated,and the upper limit with very low probability and high consequences should be emphasized. For this purpose,a complete probability distribution framework has been developed to predict the scenarios and probabilities of future sea level rise with Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs) in recent years. ② For a high emissions scenario,it was found that Antarctic Ice Sheet might make a contribution to Global Mean Sea Level (GMSL) rise as high as 78150 cm (mean value 114 cm) by 2100. For the same scenario,the IPCC Fifth Assessment Report gave an Antarctic contribution of only -8+14 cm (mean value 4 cm). ③ Recent studies recommended a revised worst-case (Extreme) GMSL rise scenario of 2.5 m from previous 2.0 m by 2100. It is recognized that GMSL rise will not stop at 2100; rather,it will continue to rise for centuries afterwards,but the degree of uncertainty related to sea level rise will increase. ④ Approaches of combining the upper-bound scenario and a central estimate or mid-range scenario, Adaptation Pathways and robust decision-making are developed to provide a set of long-term planning envelope. These decision-making methods are used widely in coastal risk management related to future sea level rise. Sea level rise and its risk management need to enhance monitoring,analysis and simulation to predict the global,regional and local seal level rise scenarios and the probabilities with different time scales,reduce the estimate uncertainty, assess its upper limits, and enhance decision methods and their application under deep uncertain, in order to meet the needs of climate change adaptation planning,decision-making and long-term risk management in coastal regions.  相似文献   

13.
Impacts of climate change have been observed in natural systems and are expected to intensify in future decades (IPCC in Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPPC, Geneva, 2014). Governments are seeking to establish adaptive measures for minimizing the effects of climate change on vulnerable citizen groups, economic sectors and critical infrastructure (Adger et al. in Global Environ Change 15(2):77–86, 2005. doi: 10.1016/j.gloenvcha.2004.12.005; Smit and Wandel in Global Environ Change 16(3):282–292, 2006. doi: 10.1016/j.gloenvcha.2006.03.008). Coastal areas are particularly vulnerable to changing conditions due to rising sea levels and storm event intensification that produce new flood exposures (Richards and Daigle in Government of Prince Edward Island, Halifax, Nova Scotia, 2011 http://www.gov.pe.ca/photos/original/ccscenarios.pdf). However, communities oftentimes lack access to locally-relevant climate change information that can support adaptation planning. This research introduces the use of a Geoweb tool for supporting local climate change adaptation efforts in coastal Canadian communities. The Geoweb tool (called “AdaptNS”) is a web-based visualization tool that displays interactive flood exposure maps generated using local climate change projections of sea level rise and storm surge impacts between the years 2000 and 2100. AdaptNS includes participatory features that allow users to identify and share specific locations to protect against present and future coastal flood events. By soliciting feedback from community members, AdaptNS is shown to support local adaptation through the provision of flood exposure visuals, as a platform for identifying adaptation priorities, and as an avenue to communicate local risks to external entities that could facilitate local adaptation initiatives (e.g. upper levels of government). Future Geoweb research directions include improving the visualization of climate change projection uncertainties, the expansion of informational and participation capabilities, and understanding the potential for long-term adoption of Geoweb tools in adaptation decision-making.  相似文献   

14.
Shennan  Ian  Tooley  Michael  Green  Frances  Innes  Jim  Kennington  Kevin  Lloyd  Jeremy  Rutherford  Mairead 《Geologie en Mijnbouw》1998,77(3-4):247-262
Analyses of geomorphologically contrasting sites in Morar, NW Scotland, describe the forcing mechanisms of coastal change. Isolation basins (i.e. basins behind rock sills and now isolated from the sea following isostatic uplift) accumulated continuous marine and freshwater sediments from c.12 to 2 ka BP. Raised dune, marsh and wetland sites register breaching, migration and stability of dunes from c. 9 to 2 ka BP. High-resolution methods designed to address issues of macroscale and microscale sea-level changes and patterns of storminess include 1-mm sampling for pollen, dinocyst and diatom analyses, infra-red photography, X-ray photography and thin-section analysis. The data enhance the record of relative sea-level change for the area. Major phases of landward migration of the coast occurred during the period of low sea-level rise in the mid-Holocene as the rate of rise decreased from c. 3 to < 1 mm/year. Relative sea-level change controls the broad pattern of coastal evolution at each site; local site-specific factors contribute to short-term process change. There is no record of extreme events such as tsunami. Within a system of dynamic metastable equilibrium, the Holocene records show that site-specific factors determine the exact timing of system breakdown, e.g. dune breaching, superimposed on regional sea-level rise. The global average sea-level rise of 3 to 6 mm/yr by AD 2050 predicted by IPCC would only partly be offset in the Morar area by isostatic uplift of about 1 mm/yr. A change from relative sea-level fall to sea-level rise, in areas where the regional rate of uplift no longer offsets global processes, is a critical factor in the management of coastal resources.  相似文献   

15.
To investigate the relative importance of projected sea-level rise, climate change effects on recharge, and groundwater extraction on seawater intrusion in important coastal aquifers in Atlantic Canada, a three-dimensional numerical model of density-dependent groundwater flow coupled with solute transport was developed for the Richibucto region of New Brunswick. The model was used, with an efficient 2k factorial design approach, to perform simulations for the period 2011–2100. The results of the factorial analyses indicate that the relative importance of the three factors investigated varies depending on the model location considered. The effect of declining recharge is most significant at shallow to intermediate depths along the freshwater–seawater transition zone, while the effect of increasing pumping rates dominates at a location relatively close to the well field. The effect of sea-level rise is shown to be significant only at the much deeper inland toe of the transition zone. The spatial variation in importance is related to how different model boundary conditions influence freshwater flow at the different locations within the model domain. This investigation indicates that sea-level rise has the least significant effect (of the three factors considered) on future seawater intrusion in sandstone aquifers in the Richibucto region.  相似文献   

16.
Rising sea levels due to climate change are expected to negatively impact the fresh-water resources of small islands. The effects of climate change on Shelter Island, New York State (USA), a small sandy island, were investigated using a variable-density transient groundwater flow model. Predictions for changes in precipitation and sea-level rise over the next century from the Intergovernmental Panel on Climate Change 2007 report were used to create two future climate scenarios. In the scenario most favorable to fresh groundwater retention, consisting of a 15% precipitation increase and 0.18-m sea-level rise, the result was a 23-m seaward movement of the fresh-water/salt-water interface, a 0.27-m water-table rise, and a 3% increase in the fresh-water lens volume. In the scenario supposedly least favorable to groundwater retention, consisting of a 2% precipitation decrease and 0.61-m sea-level rise, the result was a 16-m landward movement of the fresh-water/salt-water interface, a 0.59-m water-table rise, and a 1% increase in lens volume. The unexpected groundwater-volume increase under unfavorable climate change conditions was best explained by a clay layer under the island that restricts the maximum depth of the aquifer and allows for an increase in fresh-water lens volume when the water table rises.  相似文献   

17.
Jiang  Kejun  Chen  Sha  He  Chenmin  Liu  Jia  Kuo  Sun  Hong  Li  Zhu  Songli  Pianpian  Xiang 《Natural Hazards》2019,97(3):1277-1295

The salinization of freshwater-dependent coastal ecosystems precedes inundation by sea level rise. This type of saltwater intrusion places communities, ecosystems, and infrastructure at substantial risk. Risk perceptions of local residents are an indicator to gauge public support for climate change adaptation planning. Here, we document residential perspectives on the present and future threats posed by saltwater intrusion in a rural, low-lying region in coastal North Carolina, and we compare the spatial distribution of survey responses to physical landscape variables such as distance to coastline, artificial drainage density, elevation, saltwater intrusion vulnerability, and actual salinity measured during a synoptic field survey. We evaluate and discuss the degree of alignment or misalignment between risk perceptions and metrics of exposure to saltwater intrusion. Risk perceptions align well with the physical landscape characteristics, as residents with greater exposure to saltwater intrusion, including those living on low-lying land with high concentrations of artificial drainages, perceive greater risk than people living in low-exposure areas. Uncertainty about threats of saltwater intrusion is greatest among those living at higher elevations, whose properties and communities are less likely to be exposed to high salinity. As rising sea levels, drought, and coastal storms increase the likelihood of saltwater intrusion in coastal regions, integrated assessments of risk perceptions and physical exposure are critical for developing outreach activities and planning adaptation measures.

  相似文献   

18.
全球海平面变化与中国珊瑚礁   总被引:1,自引:0,他引:1       下载免费PDF全文
王国忠 《古地理学报》2005,7(4):483-492
本文以政府间气候变化专业委员会(IPCC)于2001年专门报告中关于21世纪内全球气候变化的温度和海平面变化的预估为前提。简要介绍了中国珊瑚礁的定位、类型和分布,对其进行了成熟度分类,评估了全球海平面变化对中国珊瑚礁的影响。据预测,21世纪我国各海域海平面上升以南海最大,为32 ~ 98cm,其平均上升速率为0.32 ~ 0.98cm/a。从海平面上升速率与珊瑚礁生长速率的理论对比分析,中国珊瑚礁基本上能与前者同步生长,即使海平面以预估高值上升,也不会威胁其生存。从中国珊瑚礁成熟度较高、其生长趋势以侧向生长为主的现实状况出发,未来全球海平面上升能为其创造向上生长的有利条件。从古地理学“将古论今”观点出发,自全新世6000aBP以来曾存在过的高海平面和较高表层海水温度的历史,也可以佐证,21世纪的全球海平面上升不会对中国珊瑚礁的存在和发育造成威胁。现存的珊瑚礁岛应对于全球海平面上升,可以做到“水涨岛高”,它们能够屹立于上升了的未来海平面之上;但对于岛上的人工建筑物则会被浸、被淹,或被淘蚀和破坏,因此必须根据海平面上升的幅度和速率,采取相应的防御措施。  相似文献   

19.
未来江苏中部沿海相对海面变化预测   总被引:2,自引:0,他引:2  
相对海面变化是由全球绝对海面变化和区域性地面和海面因素共同控制。通过对江苏沿海近几十年来的潮位记录的分析,得出江苏沿海近期的相对海面变化速率。在此基础上根据近期绝对海面的变化速率计算出局地因素对江苏沿海相对海面变化的贡献量。在假设未来局地因素影响基本不变的前提下与IPCC对未来100年绝对海面的变化趋势 进行叠加,预测了江苏沿海未来相对海面变化的趋势。结果显示,江苏中部沿海海面在2000-2100年的100年间将上升15~152 cm,较IPCC对同期全球平均海平面上升的预测结果大的多。最后就区域性海面气压对相对海面变化的影响进行了讨论。  相似文献   

20.
The eustatic sea-level rise due to global warming is predicted to reach approximately 18?C59 cm by the year 2100, which necessitates the identification and protection of sensitive sections of coastline. In this study, the classification of the southern coast of the Gulf of Corinth according to the sensitivity to the anticipated future sealevel rise is attempted by applying the Coastal Sensitivity Index (CSI), with variable ranges specifically modified for the coastal environment of Greece, utilizing GIS technology. The studied coastline has a length of 148 km and is oriented along the WNW-ESE direction. CSI calculation involves the relation of the following physical variables, associated with the sensitivity to long-term sea-level rise, in a quantifiable manner: geomorphology, coastal slope, relative sea-level rise rate, shoreline erosion or accretion rate, mean tidal range and mean wave height. For each variable, a relative risk value is assigned according to the potential magnitude of its contribution to physical changes on the coast as the sea-level rises. Every section of the coastline is assigned a risk ranking based on each variable, and the CSI is calculated as the square root of the product of the ranked variables divided by the total number of variables. Subsequently, a CSI map is produced for the studied coastline. This map showed that an extensive length of the coast (57.0 km, corresponding to 38.7% of the entire coastline) is characterized as highly and very highly sensitive primarily due to the low topography, the presence of erosionsusceptible geological formations and landforms and fast relative sea-level rise rates. Areas of high and very high CSI values host socio-economically important land uses and activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号