首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation has been widely applied to the assessment of debris flow hazards.In East Asia and especially Taiwan,the most widely used numerical programs are FLO-2D and Debris-2D.Although these two programs are applied to the same engineering tasks,they are different in many aspects.These two programs were compared according to their fundamental theories,input and output data,computational algorithms and results.Using both programs,the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison.The simulation results show that Debris2D gives better assessment in hazard area delineating and flow depth predicting.Therefore,Debris-2D is better for simulation of granular debris flows.  相似文献   

2.
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.  相似文献   

3.
Liu  Yao  Liu  Baoliang  Lei  Jilin  Guan  Changtao  Huang  Bin 《中国海洋湖沼学报》2017,35(4):912-920
A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system.The realizable k-s turbulence model was applied to describe the flow,the discrete phase model(DPM) was applied to generate particle trajectories,and the governing equations are solved using the finite volume method.To validate this model,the numerical results were compared with data obtained from a full-scale physical model.The results show that:(1) the realizable k-e model applied for turbulence modeling describes well the flow pattern in octagonal tanks,giving an average relative error of velocities between simulated and measured values of 18%from contour maps of velocity magnitudes;(2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank.The average relative error of the removal rates between simulated and measured values was 11%.The DPM can be used to assess the self-cleaning capability of an octagonal tank;(3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations.The velocity distribution was uniform with an average velocity of 15 cm/s;the velocity reached0.8 m/s near the inlet pipe,which can result in energy losses and cause wall abrasion;the velocity in tank corners was more than 15 cm/s,which suggests good water mixing,and there was no particle sedimentation.The percentage of particle removal for octagonal tanks was 90%with the exception of a little accumulation of 5 mm particle in the area between the inlet pipe and the wall.This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.  相似文献   

4.
Characteristics from a hydrodynamic model of a trapezoidal artificial reef   总被引:1,自引:0,他引:1  
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef. Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices; and forces for the reef model were measured by load cell. The results of flume experiments agree well with the numerical data. In addition, the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes, showing a more complicated flow structure than that of a stand-alone reef. Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef. The role of the reef in water flow is to reduce flow velocity and generate turbulence.  相似文献   

5.
The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.  相似文献   

6.
Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.  相似文献   

7.
Excessive sedimentation in mountain stream ecosystems is a critical environmental problem due to the clogging of streambeds by sediment particles within the hyporheic zone,with detrimental effects on fish spawning habitat.In this research,the effects of an array of boulders in regulating the intrusion of incoming sand within a gravel substrate were evaluated by performing detailed experiments in a laboratory flume.A unique experimental setup and two different sampling techniques were utilized for measuring the infiltrated sand within the gravel bed under two bed shear stress conditions(moderate vs.high).For comparison purposes,experiments were performed without and with the presence of partially submerged to the flow(protruding) boulders,which is typical for the average flow conditions found in mountain streams.Results indicated that sand infiltrated primarily in the upper part of the gravel bed creating a surface seal which hindered the penetration of sand particles deeper into the bed.An exponential decrease of the amount of the infiltrated sand within the hyporheic zone was observed in all experiments regardless of the presence of boulders.However,the presence of boulders promoted sediment intrusion of sand particles especially for the moderate applied bed shear stress condition,since the total amount of the infiltrated sand was found to be on average 44% greater whenboulders were present.The findings from this study can provide additional insight regarding the role of boulders on promoting downwelling of flow and sediment within the gravel substrate with potential effects on fish habitat.  相似文献   

8.
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ε model and Shear-Stress Transport κ-ω(SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3–1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.  相似文献   

9.
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.  相似文献   

10.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   

11.
Debris flows form deposits when they reach an alluvial fan until they eventually stop.However,houses located in the alluvial fan might affect the debris flow flooding and deposition processes.Few previous studies have considered the effects of houses on debris flow flooding and deposition.This study conducted model experiments and numerical simulations using the Kanako2D debris flow simulator to determine the influence of houses on debris flow flooding and deposition.The model experiments showed that when houses are present,the debris flow spreads widely in the cross direction immediately upstream of the houses,especially when the flow discharge is large or the grain size is small.Houses located in the alluvial fan also influence the deposition area.The presence of houses led to flooding and deposition damage in some places and reduced the damage in others.The simulation also demonstrated the influence of houses.Both the model experiment and the simulation showed that houses change the flooding and deposition areas.  相似文献   

12.
Natural consolidation characteristics of viscous debris flow deposition   总被引:1,自引:0,他引:1  
Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive understanding about the entire consolidation process and focused on exploring pore water pressure and volumetric water content variations of the deposit body during natural consolidation under different conditions taking the viscous debris flow mass as a study subject and by flume experiments. The results indicate that, as the color of the debris changed from initial dark green to grayish-white color, the initial deposit thickness declined by 3% and 2.8% over a permeable and impermeable sand bed, respectively. A positive correlation was observed between pore water pressure and depth in the deposit for both scenarios, with deeper depths being related to greater pore water pressure. For the permeable environment, the average dissipation rate of pore water pressure measured at depths of 0.10 m and 0.05 m were 0.0172 Pa/d and 0.0144 Pa/d, respectively, showing a positivechanging trend with increasing depth. Under impermeable conditions, the average dissipation rates at different depths were similar, while the volumetric water content in the deposit had a positive correlation with depth. The reduction of water content in the deposit accelerated with depth under impermeable sand bed boundary conditions, but was not considerably correlated with depth under permeable sand bed boundary conditions. However, the amount of discharged water from the deposit was greater and consolidation occurred faster in permeable conditions. This indicates that the permeability of the boundary sand bed has a significant impact on the progress of consolidation. This research demonstrates that pore water and pressure dissipations are present during the entire viscous debris consolidation process. Contrasting with dilute flows, pore pressure dissipation in viscous flows cannot be completed in a matter of minutes or even hours, requiring longer completion time — 3 to 5 days and even more. Additionally, the dissipation of the pore water pressure lagged the reduction of the water content. During the experiment, the dissipation rate fluctuated substantially, indicating a close relationship betweenthe dissipation process and the physical properties of broadly graded soils.  相似文献   

13.
Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planning it is of significance to determine the location,size and type of dam and the effects of damage mitigation.We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully,Kyoto City,Japan.The simulations were carried out for three situations:1) the simulations of erosion,deposition,hydrograph changing and inundation when there were no mitigation measures;2) the simulations of check dams in four locations(470 m,810 m,1,210 m and 1,610 m from the upstream end) to identify the best location;3) the simulations of check dams of three types(closed,slit and grid) to analyze their effects on sediment trapping and discharge reduction.Based on the simulations,it was concluded that two closed check dams(located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.  相似文献   

14.
This paper presents debris-flow numerical simulations using the Hyper KANAKO system, developed by the authors. The system uses the debris flow simulator KANAKO 2D equipped with a graphical user interface (GUI); hence, a user can easily produce appropriate landform data for simulations using standard laser profiler data, and visualize the results using a GIS. Hyper KANAKO was applied to the streams around Kiyomizu-dera in Kyoto, Japan. Kiyomizu-dera is a famous temple in Japan which is visited by numerous tourists throughout the year. We simulated a disaster scenario of debris flow caused by torrential rain. We set the hydrograph using rainfall intensity data, and set the landform data using information from the Geospatial Information Authority of Japan (GSI) and a digital elevation model (DEM). We evaluated different mesh sizes and also used a digital surface model (DSM) to consider the building heights. The simulation results showed that with small mesh size, the debris flow moved through the roads, which seems realistic for a disaster situation. When buildings were considered, the flow direction changed, and a 1-m flow depth, which was deeper than in other cases, appeared in the flow path. This may pose a dangerous situation for evacuations.  相似文献   

15.
The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.  相似文献   

16.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

17.
Barchan dune is one of the basic forms of eolian landform, it is usually moulded by high-concentration non-saturated wind-sand flow. The formation process of barchan dune begins from “wave-grain duality” of wind-sand movement, and goes through two developmental stages of sand material accumulating (high-concertration saturated wind-sand flow) and dune form moulding (high-concentration non-saturated wind-sand flow), i.e. the processes of dissipative increase and dispersive decrease. The scattered single barchan dunes on non-sandy bed surface have obvious characteristics of mobility and unstability (not including barchan sand hill). The formation of barchan dune in wind tunnel (its dune scale is one order of magnitude larger than sand ripple scale) is helpful to know the formation mechanism of barchan dunes. One of the series achievements supported by the National Natural Science Fundation of China (No. 49371009)  相似文献   

18.
On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide deposits retained in the ravine during the 2008 Wenchuan earthquake. This paper describes a two-dimensional hybrid numerical method that simulates the entire process of the debris flow from initiation to transportation and finally to deposition. The study area is discretized into a grid of square zones. A two dimensional finite difference method is then applied to simulate the rainfall-runoff and debris flow runout processes. The analysis is divided into three steps; namely, rainfall-runoff simulation, mixing water and solid materials, and debris flow runout simulation. The rainfall-runoff simulation is firstly conducted to obtain the cumulative runoff near the location of main source material and at the outlet of the first branch. The water and solid materials are then mixed to create an inflow hydrograph for the debris flow runout simulation. The occurrence time and volume of the debris flow can be estimated in this step. Finally the runout process of the debris flow is simulated. When the yield stress is high, it controls the deposition zone. When the yield stress is medium or low, both yield stress and viscosity influence the deposition zone. The flow velocity is largely influenced by the viscosity. The estimated yield stress by the equation, τ y = ρghsin θ, and the estimated viscosity by the equation established by Bisantino et al. (2010) provide good estimates of the area of the debris flow fan and the distribution of deposition depth.  相似文献   

19.
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG k-ɛ turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of 2.3%–11.2% and that the corresponding errors of velocities vary in the range of 1.3%–15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.  相似文献   

20.
Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen's open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号