首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To demonstrate the atmospheric emission characteristics of cadmium (Cd), which is considered an important contaminant to human health and environment, a comprehensive emission inventory of Cd has been established by applying the best available emission factors and activity data for the first time. This inventory covers major anthropogenic sources in China and a bottom-up approach is adopted to compile the inventory for the sources where possible. The total emissions of Cd are estimated at about 743.77 metric tons for the year 2009, of which the contributions of industrial processes and combustion sources are approximately 56.6 and 43.4 %, respectively. Nonferrous metals smelting including copper, lead, and zinc, ranks as the leading source accounting for about 40.6 % of the total. The high contribution results from the rapid growth of nonferrous metallurgical industry that reflects a new focus of Cd emission pollution in China. Cd emissions from coal combustion are estimated at approximately 273.69 metric tons, with a share of 36.8 %, in which industrial coal-burning sector is thought to be the primary source. Moreover, Cd emissions are spatially allocated onto grid cells with a resolution of 0.5° × 0.5°, indicating that the emissions are mainly distributed among the regions of eastern, central and southern China. In addition, the uncertainties in the inventory are quantified by using a Monte Carlo simulation, and the overall uncertainty falls within a range of ?15 to 48 %. It implies that more field tests for industrial coal combustion and metals smelting process are very necessary.  相似文献   

2.
The heavy metal content of particulate matter was investigated in the city of Guangzhou in southern China. Samples of urban foliage near 36 pedestrian bridges were analyzed to determine their Zn, Pb, Cu, Cr, V, Ni, and Co contents after digestion in a mixture of strong acids composed of HNO3, HCl, HF, and HClO4. The results revealed a severe heavy metal pollution compared with the background levels in Chinese soils, except for Co and V. The mean concentrations of Zn (1,024 mg kg?1), Pb (233 mg kg?1), Cu (203 mg kg?1), Cr (118 mg kg?1), V (41.9 mg kg?1), Ni (41.4 mg kg?1), and Co (11.3 mg kg?1) in urban dust were higher than the reference levels, and were highest in samples located near high-traffic areas. Multivariate statistical methods (correlation analysis, principal-components analysis, and clustering analysis) were used to identify the possible sources of the metals. Three main pollutant sources are assigned: Zn, Cu and Ni levels were strongly correlated and were possibly related to combustion processes and vehicles; Pb, Cr and Co were mainly derived from traffic sources, combined with soil sources; and V mainly originated from natural sources.  相似文献   

3.
Bio-concentration of elements such as Mo, As, Se, Fe, Cu, Zn, Ni and Pb was analyzed in spring onion (Allium fistulosum L.) in three different locations of central Punjab, Pakistan. At location GW, relatively low level of hazardous elements was found in spring onion, suggesting that groundwater is a safe source of water for irrigating food crops. The pH of soil at wastewater irrigation was found less acidic (pH 7.4) than the other sites. The range of concentration in the different samples of spring onion was as follows: 6.15–8.16 mg kg?1 for Mo, 2.77–4.28 mg kg?1 for As, 0.395–0.705 mg kg?1 for Se, 36.73–48.17 mg kg?1 for Fe, 10.58–16.26 mg kg?1 for Cu, 28.87–39.79 mg kg?1 for Zn, 6.66–8.75 mg kg?1 for Ni and 4.33–6.09 mg kg?1 for Pb, respectively. High bio-concentration of Zn (15.37) from soil to spring onion was found at canal water irrigated location. The estimated daily intake of metal for spring onion was less, but the health risk index was higher than 1 for Mo, As, Cu, Pb and Ni, respectively. This was due to higher proportion of spring onion in diet, which consequently increased the health risk index for metals. Therefore, it is recommended to avoid growing vegetables in untreated urban and rural wastewater containing elevated amounts of metals.  相似文献   

4.
Consumption of primary energy in Korea increased 5.25 % per year over a 10 years span starting in 1990. Korea ranked 8th in primary energy consumption in 2011; coal consumption increased 35 % from 87,827 million tons in 2006–119,321 tons in 2010. Heavy energy-consuming countries consistently conduct research to develop an emission factor of Tier 2 level, reflecting the characteristics of the fuel that they use. To calculate the emission factor of bituminous coal for fuel, this study developed emission factor and calculated emission amount by implementing fuel analysis on bituminous coal consumed in Korea between 2007 and 2009. CO2 emission factor calculated by fuel analysis method is 95,315 kg/TJ, which is 0.75 % higher than the default value suggested by IPCC. The emission amount calculated by using the CO2 emission factor in this study is 231.881 million tons, which has a difference of 1.739 million tons compared to the IPCC default value.  相似文献   

5.
The results of investigations (SEM/EDS and AAS) of a peat deposit, spanning 13,000 years of peat accumulation, are shown. The peat deposit is located in a region of shallow occurrence of Zn–Pb ores, near Tarnowskie Góry town, within the Cracow–Silesia district (southern Poland). Exploitation of lead, silver and iron during the medieval times (Twelfth and thirteenth century) was confirmed by historical documents whereas there are no unambiguous data showing that there was metal mining during the Romanian or earlier times in the region. The peat deposit is located within the influence of atmospheric Pb and Zn emission from a nearby Zn–Pb smelter. Two vertical peat profiles were investigated (120 and 140 cm depth of profile) showing variable concentrations of Zn up to 713 mg kg?1, Pb up to 317 mg kg?1, Cd up to 13 mg kg?1 and Tl up to 31 mg kg?1. The highest concentrations were recorded for the uppermost peat layers. SEM and EDS investigations revealed the occurrence of metalbearing, submicroscopic mineral components: Fe, Mn, Ti and Zn oxides and Zn and Pb carbonates. The top layer of the deposit contained Zn, Pb and Cd sulphides. The occurrence of aggregates of Au–Ag, Cu–Zn and Au–Ag–Cu alloys can be possibly related to pre-historical mining and smelting or be explained by geochemical transformations. The preservation of carbonates and oxides in the peat is discussed, indicating a generally neutral to alkaline peat water chemistry and maintenance of an oxidized environment in the fen.  相似文献   

6.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

7.
The increasing usage and disposal of plastic products could cause the wide distribution of phthalate esters (PAEs) in various environmental media. In this study, six PAE compounds, namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate, were analyzed in various samples collected from the major plastic industrial area of southern Taiwan, including soil, fertilizer and plastic products, for the purposes of identifying of the possible sources of PAEs and assessing the related health risk. The results show that PAEs in soil samples was dominated by DEHP, with the total concentrations in the range of 0.7?±?0.5, 0.2?±?0.1, and 0.3?±?0.2 mg kg?1 for soil samples from farmland, household back gardens and the roadside, respectively. Contents of PAEs in chemical fertilizer (ND—0 0.87 mg kg?1) were higher than that in organic fertilizer (ND—0.08 mg kg?1), and PAEs concentrations (ND—316 mg kg?1) in plastic mulching films were much less than those in the other types of plastic products (ND—1719 mg kg?1), implying that major sources of PAEs in agricultural soil could be the use of chemical fertilizer and plastic products other than plastic mulching films. Health risk assessment suggested that, via the exposure to PAEs in soil, the potential non-cancer and carcinogenic risks for adults and children are minimal in most cases, except that a “moderate” carcinogenic risk for children exposure to DEHP. The results of this study can serve as a reference for further pollution prevention and environmental protection plans in relation to the industrial operation and discharge as well as the farming practices.  相似文献   

8.
Pollution from mining activities is a significant problem in several parts of the Republic of Macedonia. A geochemical study of the surficial sediments of Lake Kalimanci in the eastern part of the Republic of Macedonia was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing an enrichment factor (EF). The major and trace element contamination in surficial lake sediments was studied to assess the effects of metalliferous mining activities. The mean concentrations of major elements (wt%) Si 23.5, Al 7.9, Fe 6.6, Mg 1.3, Ca 3.8, Na 1.1, K 2.3, Ti 0.4, P 0.2, Mn 0.6 and trace elements ranged within Mo 1.0–4.6 mg kg?1, Cu 144.4–1,162 mg kg?1, Pb 1,874–16,300 mg kg?1, Zn 2,944–20,900 mg kg?1, Ni 21.7–79.3 mg kg?1, Cd 16.5–136 mg kg?1, Sb 0.6–3.6 mg kg?1, Bi 3.0–24,3 mg kg?1 and Ag 1.4–17.3 mg kg?1. The EF ranged within 0.12–590.3. Among which, Cd, Pb, Zn and As have extremely severe enrichment. The data indicate that trace elements had extremely high concentrations in Lake Kalimanci surficial sediments owing to the anthropogenic addition of contaminants.  相似文献   

9.
La Goulette, Rades and Sidi Bou Said harbours are considered as the most important commercial and tourist ports in the Gulf of Tunis. They are located on the northeast coast of Tunis and receive industrial and municipal wastewaters from Tunis city. The contamination level of copper, lead, zinc, cadmium, manganese, iron, total nitrogen and total organic carbon in the surface sediments was assessed on the basis of the enrichment index factors and corresponding to sediment quality guidelines. The results revealed moderate to highly elevated concentrations near to the sites of intense industrial, shipping and/or commercial activities suggesting a direct influence of these sources. In winter and summer, concentrations varied for cadmium, 0.28–1.40 mg kg?1; lead, 18–217 mg kg?1; zinc, 87–459 mg kg?1; copper, 8–121 mg kg?1; manganese, 208–254 mg kg?1; and for iron, 24–40 g kg?1. Furthermore, in summer the concentration of the total organic carbon and the total nitrogen contents range between 4.3–6.5 % and 0.06–0.49 % with an average value of 5.9 and 0.15 %, respectively. Whereas, in winter, total organic carbon and the total nitrogen concentrations varied between 2.3–9.6 % and 0.03–0.22 % with an average value of 6.1 and 0.14 %, respectively. The levels of lead, copper, zinc and iron in suspended particulate matter content range between 3.1–27.5 mg kg?1; 0.4–11.7 mg kg?1; 1–1.5 mg kg?1; 1.2–1.7 g kg?1, respectively. This study revealed that heavy metals pollution is mainly localized in the commercial (Rades) and fishing (La Goulette) harbours and not in the yachting (Sidi Bou Said) harbour.  相似文献   

10.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

11.
The presence of arsenic (As) in surface water constitutes an important environmental risk, where mobility and adsorption processes are responsible for its behavior in the sediment–water interface. Therefore, the assessment of adsorption, mobility and water availability of arsenic in freshwater sediments, with agricultural, livestock and urban soil uses was performed. Arsenic concentrations in sediments ranged from 5.4 to 15.9 mg kg?1 (total) and 2.8 to 6.5 mg kg?1 (labile), and those of iron and manganese were 11,563–23,500 and 140.6–662.1 mg kg?1, respectively. The As levels in water were significantly lower than those of sediments. Results would suggest that As co-precipitation and adsorption on Fe oxides are probably the major route of immobilization, determining its low lability. Manganese did not present an outstanding contribution to the retention, and cation-exchange capacity, pH and organic matter of sediments did not show an influence on the mobility of As.  相似文献   

12.
Oily sludge from gas processing facilities contains components that are major environmental pollutants. Biodegradation is an alternative treatment, but can be affected by other components of the sludge, such as sulphur compounds, so it is important to evaluate the effect of these on oil biodegradation in order to prevent negative impacts. This work studied the transformation of sulphur compounds in oily sludge biodegradation systems at the microcosm level. The predominant sulphur compounds in the original sludge were elemental sulphur and pyrite (9,776 and 28,705.4 mg kg?1, respectively). In the biodegradability assays, hydrocarbon concentrations decreased from 312,705.6 to 186, 760.3 mg kg?1 after 15 days of treatment. After this time, hydrocarbon degrading activity stopped, corresponding with a decrease in hydrocarbon degrading bacteria. These changes were related to a reduction in pH that inhibits biodegradation. During the assay, sulphur compounds were gradually oxidized and transformed. The concentration of sulphate increased from 5,096 to 64,868.3 mg kg?1 after 30 days in the assay, although controls were unchanged. Therefore, it is important to determine changes to the main compounds of the waste in order to assess their impact.  相似文献   

13.
In this work, the total and each fraction concentration of toxic metals (Pb, Zn, Cu and Cd) in soils as well as in plants from a typical metallurgical industrial area in southwest of China were determined. The obtained experimental results demonstrated that the total toxic metal content in contaminated soils was in the order of Zn > Pb > Cu > Cd. Modified microwave-assisted extraction showed that the distributions of each fraction of toxic metals in soils were different and some soil properties may play a role in the fraction distributions. The content of Cu, Zn, Cd and Pb in different vegetables ranged from 9.82 ± 1.02 to 39.3 ± 1.13 mg kg?1, 1,321 ± 10.50 to 3,153 ± 11.30 mg kg?1, 4.47 ± 0.21 to 18.9 ± 0.37 mg kg?1 and 28 ± 1.2 to 102 ± 1.5 mg kg?1, respectively. And the accumulation of toxic metals in plants was in the order of Cd > Zn > Cu > Pb. The bioconcentration factor (BCF) values of Cd, Zn, Cu and Pb in the different tissues of plants were in the range of 0.03–0.43, 0.027–0.35, 0.014–0.12 and 0.004–0.051, respectively. The distribution of each toxic metal in plants indicated that the ability for plants to accumulate toxic metals in different tissues followed the sequence of leaf > stem.  相似文献   

14.
Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg?1) and certain heavy metals (up to 321.7 mg kg?1 for Bi, 5,414 mg kg?1 for Cu, 20,000 mg kg?1 for Pb, 980.6 mg kg?1 for Sb, and 22 mg kg?1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg?1) and Zn (up to 20,000 mg kg?1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.  相似文献   

15.
Lead (Pb) dust exposure can have detrimental environmental and human health effects. Improperly enclosed stockpiles of Pb concentrates can cause dust emissions, subsequent pollution of the soil and environmental risk. The aim of this work was to study Pb form, distribution and immobilization (by using eggshell and seashell) in an industrial arid soil near a storage area of Pb mineral concentrates in northern Chile. High amounts of sulfur (S; 9900 mg kg?1) and Pb (6530 mg kg?1) were found in the polluted soil. The energy-dispersive X-ray spectroscopy analysis revealed a lead sulfide (PbS: galena). Metallic Pb particles, which were between 41 and 46 µm, were identified in the soil. After eggshell and seashell (20%) were applied, the soil pH increased from 6.0 to 7.84 and 8.07, respectively. In the studied soil, the leaching test showed a 59 mg L?1 average Pb extractable concentration. After 240 days, extractable Pb by toxicity characteristics leaching procedure decreased to 4.79 mg L?1 (93.3%) with the application of seashell at 20% compared with a decrease of 33.33 mg L?1 (53.6%) using eggshell. Pb in the polluted soil was mainly found in the exchangeable fraction (66%), followed by the reducible (24%), residual (7%) and oxidizable (6%) fractions. According to the risk assessment code, the contaminated soil before treatment was classified as very high risk. Adding eggshell (20%) and seashell (20%) decreased the exchangeable fractions to 39 and 35%, respectively. Applying these liming materials achieved Pb immobilization in the soil, but the soil remained in the high environmental risk category. We conclude that the application of seashell waste, resulting from high aquaculture activity, opens an interesting window to the treatment of contaminated arid soils.  相似文献   

16.
Perchlorate and iodide concentrations were determined in brown (Undaria pinnatifida and Laminaria japonica) and red (Porphyra sp.) edible seaweeds, which are commonly consumed by Korean people, with the use of ion chromatography, coupled with a tandem mass spectrometer. Seaweeds (i.e., good sources of iodine) are among the most important plant life in the ocean and commonly consumed as food and nutritional supplement in South Korea. All seaweed samples were purchased from different regions in South Korea. The detected concentrations of perchlorate were as follows: 19.7–620.7 μg kg?1 dry weight (n = 11, mean concentration = 149.2 μg kg?1 dry weight) for L. japonica and 7.3–21.7 μg kg?1 dry weight (mean concentration = 10.6 μg kg?1 dry weight) for U. pinnatifida. Of the 11 samples of Porphyra sp., only 1 sample showed 6.7 μg kg?1 dry weight perchlorate. The concentrations of iodide in all seaweed samples varied from 0.44 to 6,800 mg kg?1 dry weight. L. japonica samples (n = 11) had significantly higher iodide concentrations, with a mean of 5,261 mg kg?1 dry weight. The bioconcentration factor values for perchlorate and iodide in the three different seaweeds varied widely and showed similar variation trends. The trend for perchlorate and iodide was Porphyra sp. < U. pinnatifida < L. japonica. The results have provided growing evidence that perchlorate frequently occurs in food products.  相似文献   

17.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

18.
While the Intergovernmental Panel on Climate Change classifies coal as anthracite, bituminous coal, and sub-bituminous coal, Korea only distinguishes coal as anthracite and bituminous coal while sub-bituminous coal is considered bituminous coal. As a result, Korea conducted research in the CO2 emission factors of anthracite and bituminous coal, but largely ignored sub-bituminous coal. Therefore, the purpose of this research is to develop the CO2 emission factor of sub-bituminous coal by classifying sub-bituminous coal from resources of bituminous coal activities collected in Korea between 2007 and 2011. The 2007–2011 average carbon content of sub-bituminous coal was analyzed to be 69.63 ± 3.11 %, the average hydrogen content 4.97 ± 0.37 %, the inherent moisture 12.60 ± 4.33 %, the total moisture 21.91 ± 5.45 %, and the dry-based gross calorific value was analyzed to be 5,914 ± 391 kcal/kg; using these analyzed values, the as-received net calorific value was found to be 20.75 ± 7.59 TJ/Gg and the CO2 emission factor was found to be 96,241 ± 4,064 kg/TJ. In addition, the 62.7 million ton amount for the 2009 greenhouse gas emission from sub-bituminous coal as estimated with the analyzed value of this study is an amount that is equivalent to 11.1 % of the 2009 total greenhouse gas emission amount of 564.7 million tons, and this amount is larger than the 9.3 % for the industrial processes sector, 3.3 % for the agricultural sector and 2.5 % for the waste sector. Therefore, it is important to reflect the realities of Korea when estimating the greenhouse gas emission from such sub-bituminous coals.  相似文献   

19.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

20.
Street dust from 29 locations, in some of the busiest parts of north and south Kolkata, was analysed for heavy metal composition. The decreasing order of average metal concentrations (mg kg?1) found was Mn (390) > Pb (380) > Zn (300) > As (96) > Cu (61) > Cr (40) > Co (13) > Ag (2.1). The heavy metal composition of the Kolkata dust was compared with reported data for other cities. Enrichment factors of Pb and As were high. Multivariate statistical analysis of the heavy metals and analysis of lead isotopic ratios of the dust revealed a predominant anthropogenic influence in the contamination. The range of lead isotopic ratios found in the dust was between 0.8789 and 0.8998 with a mean Pb concentration of 383 mg kg?1. The three Pb isotope plots of street dust, diesel and rainwater clustered linearly, while coal did not fit into this trend. The highest 207/206 lead isotopic ratio obtained was from diesel with a mean value of 0.9015, followed by the rainwater sample. The application of the binary mixing model showed that about 66.86% of lead contamination in the street dust was sourced from the atmosphere. The two components extracted by the principal component analysis explained 64.34% of the total variance. Vehicular and industrial emissions appeared to be an important contributor to the accumulation of heavy metals in the dust. The health risk assessment study of the dust indicated carcinogenic risk associated with As and Cr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号