首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray observations of the ROSAT -PSPC All-Sky Survey have revealed bright and energetic coronae for a number of late-type main-sequence stars, many of them flare stars. We have detected 31 X-ray flares on 14 stars. A search for simultaneous X-ray and EUV (extreme ultraviolet) flares using ROSAT Wide Field Camera survey data revealed a large number of simultaneous flares. These results indicate that the heating mechanisms of the X-ray and EUV‐emitting regions of the stellar coronae are similar. We find X-ray quiescent variability for nine of the 14 stars and simultaneous X-ray and EUV quiescent variability for seven of these nine stars. These results imply that the stellar coronae are in a continuous state of low-level activity. There are tight linear correlations of X-ray flare luminosity with the 'quiescent' X-ray as well as with the stellar bolometric luminosity. The similarity between the X-ray-to‐EUV quiescent and flare luminosity ratios suggests that the two underlying spectra are also similar. Both are indeed consistent with the previously determined Einstein two-temperature models. We suggest that both the variability and spectral results could indicate that the quiescent emission is composed of a multitude of unresolved flares.  相似文献   

2.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

3.
Observations of the Pleiades cluster by the method of stellar tracks, carried out on the 40-inch Schmidt telescope of Byurakan Astrophysical Observatory, have resulted in the detection of 49 flares from 38 stars, 17 of which were not previously known to be flare stars. It is shown that for bright stars (U ≤ 16.0) the detection of flares in observations by the method of stellar tracks is at least three times more efficient than for observations by the method of stellar chains. Another advantage of the first method is that one can detect brief flares that last less than 6 min. The visual stellar magnitude at the minimum for the brightest of the flare stars that we found is 11.92. This raised the upper luminosity limit of known flare stars in the Pleiades by 0.21 magnitude. A comparison of the expected number of bright flare stars in the Pleiades with the number of all bright members of the cluster (falling in the range from V ≈ 12.0 toV ≈16.0) suggested that all these stars evidently must be flare stars. Translated from Astrofizika, Vol. 42, No. 3, pp. 351–358, July–September, 1999.  相似文献   

4.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

5.
6.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

7.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

8.
P. B. Byrne 《Solar physics》1989,121(1-2):61-74
We present observational data on stellar flares from a range of wavelength regimes, many of which were obtained simultaneously. Physical parameters of these flares are derived and discussed in the frame-work of the general solar flare model. It is found that flares on dMe stars are solar-like, except in mean energy. The parameters of flares on RS CVn stars are more extreme, however, and may require new models for their interpretation.  相似文献   

9.
Observations of regular and irregular polarimetric variability in late-type stars are reviewed, and the related physical and geometrical effects are discussed. There are indications that the irregular part of the variability could be caused by transient events, possibly associated with flares. Polarimetric observations during flares are reviewed, and preliminary results of new observations of a well-known flare star, YY Geminorum, are presented. The results show that the small flare in YY Gem did not cause any significant variations in linear polarization, while the binary eclipse evidently causes an enhancement in the polarization. The reasons for the difficulties in stellar flare polarimetry are discussed. Finally, future prospects for the observations of flaring stars and for the utilization of linear polarimetry as a complementary method to other techniques of surface imaging of stellar activity and flares are presented.  相似文献   

10.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

11.
We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s?1. The strongest flare was observed with the ratio ~13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ~100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.  相似文献   

12.
Quasi-periodic pulsations (QPPs) with at least three simultaneously existing spectral components with periods P≥30 s, P≈20 s, and about P≈10 s were detected during the decay phase of a solar flare on 3 July 2002, observed with the Nobeyama Radioheliograph (NoRH). A detailed study of the spatial structure of the Fourier amplitudes of QPPs along a flaring loop has revealed different spatial distributions of the three components. It is shown that the source of the QPPs with period P≥30 s has its maximum amplitude in the inner region of the loop, between the footpoints. QPPs with period P≈20 s are localized at the periphery of the loop, mainly in the outer parts of the footpoints. The spatial distribution of oscillations with period about P≈10 s contains three regions of high QPP amplitudes: two near the footpoints and one in the middle of the flaring region. It is shown that the observed properties of the spectral components are most accurately described by the fundamental, second, and third harmonics of the kink mode standing waves. This is the first identification of the kink mode in flare loops which is based on strict limitations derived from data on the spatial structure of a pulsating flare region.  相似文献   

13.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

15.
Giovanni Peres 《Solar physics》1989,121(1-2):289-298
This paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Ca xix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.  相似文献   

16.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

17.
We continued the analysis of 279 G-type stars with superflares (energies in the range of 1033–1036 erg). We calculated the SFL parameter (part of the stellar surface which emits in the flare). The SFL estimates were derived from the relation connecting this value with the amplitude of the flare and its radiation on the assumption of the blackbody character of the emission at times close to its maximum. Most SFL values are in the range of 0–0.1, with values of 0.2–0.4 for some strong flares. Dependence of SFL on effective temperature for stars with superflares is similar to that found earlier for the spottedness parameter S. The SFL distribution reaches its maximum in the temperature range of about 5100–5250 K and decreases with the effective temperature increase. We suggested an assumption on the presence of bimodal distribution in the “SFL–rotation period” relation with a gap for objects with rotation periods P of about 10 days. For stars with P less than 10 days, the given data can indicate a decrease in flare areas with the P increase. Our analysis showed that significant changes both in flare energy and in flare areas can be achieved with small changes in spottedness S for one and the same star.  相似文献   

18.
We study quasi-periodic pulsations (QPPs) in the SOL2014-09-10 event that was detected by the Geostationary Operational Environmental Satellites (GOES), the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO), and the Gamma Ray Burst Monitor (GBM) onboard the Fermi satellite. Previous studies have found that this flare displays four-minute QPPs in a broad range of wavelengths. In this article, we find that this event also shows QPPs with a period of around one minute. Using the Fast Fourier Transform (FFT) method, the light curves are decomposed into fast- and slowly varying components with a separation at \({\approx}\,100~\mbox{seconds}\). The four-minute QPPs are in the slowly varying component, and the one-minute QPPs are identified with the fast-varying components in the impulsive and maximum phases. Similarly as the four-minute QPPs, the one-minute QPPs are simultaneously found in soft X-rays (SXR), extreme ultraviolet (EUV), and hard X-ray (HXR) emission. High correlations are found between the fast-varying components at the different wavelengths, especially between SXR and HXR. The spatial location of the sources of one-minute QPPs differ from those of the four-minute QPPs. The four-minute QPPs appear in the whole flare region, while the one-minute QPPs tend to originate from the flare loop footpoints. This finding provides an observational constraint for the physical origin of the QPPs.  相似文献   

19.
Jan Kuijpers 《Solar physics》1989,121(1-2):163-185
An overview is given of the observations of stellar radio flares, defined as radio emission which is both variable in time and created by explosive releases of magnetic energy. The main sources of such flares are late-type Main-Sequence stars, classic close binaries, X-ray binaries, and pre-Main-Sequence stars.We summarize the interpretations of these observations in terms of the various incoherent and coherent emission mechanisms. The possible importance of a coherent emission process in electrostatic double layers is pointed out.We briefly indicate the diagnostic importance of radio emission for the flare process in classic and compact stars. In particular we discuss the possible production of radio flares from interactions between an accretion disk and the magnetic field of the central object.  相似文献   

20.
Sinusoidal variations in Johnson'sB-band of the flare star EV Lac have been confirmed at its quiet state luminosity. The cycle lengths are more than one hour and less than two hours with amplitudes varying from 0 . m 105 to 0 . m 306. These registered cycles have agreed with cycles detected by Mavridis and Varvoglis (1990) and Mavridis (1990). In the same time, the cycles have confirmed the light variation detection in Johnson'sV-band in the same flare star by Pettersen (1980) with a cyclic period equals about 4 . d 378 and an amplitude of about 0 . m 07. Our net results confirm, to some extent, the presence of active region(s) as an origin of stellar flare phenomenon of UV Ceti type flare stars. We can cautiously say that the solar and stellar flare phenomenon have a similar origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号