首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interdependence of the Fe(Mg)–1 (e.g., FeO-MgO in silicate melt; CaFeSi2O6-CaMgSi2O6 in pyroxene) and TiAl2(MgSi2)–1 exchange reactions between silicate melts and coexisting Ca-pyroxene has been examined. High-calcium clinopyroxenes were grown in 1 atmosphere melting and crystallization experiments on rock powders spanning the composition range tholeiite to melilitite (1,0922+Mg2+ exchange and suggest that at given values of extent of Fe(Mg)–1 substitution is strongly coupled with the TiAl2(MgSi2)–1 substitution in pyroxenes near the five-component space CaMg(Si2O6-CaFe(Si)2O6-CaTi(Al)2O6-CaFe(Al,Si)2O6-CaAl(Al,Si)2O6. The inferred stabilization of Ti in iron-rich relative to magnesium pyroxene is consistent with the operation of Fe2+Ti4+ intervalence charge transfer interactions (e.g., Rossman 1980) and observations on zoning in natural titanaugites (e.g., Tracy and Robinson 1977). Although the rims of some pyroxenes grown in some melting experiments exhibit prominent zoning in TiAl2(MgSi2)–1, the average values of inferred from the compositions of these pyroxenes, together with those of the relatively homogeneous pyroxenes produced in crystallization experiments, exhibit a 11 correlation with values of derived from the solution model of Ghiorso et al. (1983) with a standard error of 750 calories. The Ti contents of Ca-rich pyroxenes crystallizing from a wide range of natural silicate liquids can therefore be predicted.  相似文献   

2.
Pyroxenes and olivines from the earlier stages of fractionation of the Skaergaard intrusion (Wager and Brown, 1968; Brown, 1957) have been studied using the electron microprobe. The subsolidus trend for both Ca-rich and Ca-poor pyroxenes has been established, from the Mg-rich portion of the quadrilateral to the Hed-Fs join, together with the orientations of the tie-lines joining coexisting pyroxenes. For the Mg-rich Ca-poor pyroxenes, Brown's (1957) solidus trend has been modified slightly. From a study of a previously undescribed drill core, reversals in the cryptic layering have been found in the Lower Zone. The reversals are attributed to existence within the convecting magma chamber of local temperature differences. The Skaergaard magma temperatures are postulated to have passed out of the orthopyroxene stability field into the pigeonite stability field at EnFs ratios of 7228, for Ca-free calculated compositions, and specimen 1849, a perpendicular-feldspar rock, is interpreted as straddling the orthopyroxene-pigeonite transition interval. The cessation of crystallisation of Ca-poor pyroxene and the increase in Wo content of the Ca-rich pyroxene trend have been reexamined, and Muir's (1954) peritectic reaction (pigeonite+liquid=augite) has been confirmed. The composition at which Ca-poor pyroxene starts reacting with the liquid is postulated as Wo10 En36.7Fs53 3. It is suggested that the cessation of crystallisation of Ca-poor pyroxene is sensitive to the amount of plagioclase crystallising from the liquid.A complete series of accurate olivine compositions for the whole Skaergaard sequence is presented for the first time, including the compositions of the Middle Zone olivine reaction rims.  相似文献   

3.
The compositions of five different coexisting pyroxenes hypersthene, pigeonite and augite in groundmass and bronzite and augite of phenocryst in a tholeiitic andesite from Hakone Volcano, Japan have been determined by the electron probe microanalyser. It is shown that there is a compositional gap of about 25 mole per cent CaSiO3 between groundmass pigeonite and augite, compared with 35 per cent CaSiO3 between phenocrystic augite and bronzite. Subcalcic augite or pigeonitic augite was not found. The groundmass augite, which occurs only as thin rims of pigeonite and hypersthene, is less calcic and more iron-rich than the phenocryst augite. It is also shown that the groundmass pigeonite is 3–4 mole per cent more CaSiO3-rich than the coexisting groundmass hypersthene. The Fe/(Mg + Fe) ratios of these coexisting hypersthene and pigeonite are about 0.31 and 0.33, respectively. It is suggested from these results that a continuous solid solution does not exist between augite and pigeonite of the Fe/(Mg + Fe) ratio at least near 0.3 under the conditions of crystallization of groundmass of the tholeiitic andesite. It is suggested from the Mg-Fe partition and the textural relation that the groundmass augite crystallized from a liquid more iron-rich than that from which groundmass hypersthene and pigeonite crystallized.  相似文献   

4.
Optically homogeneous pigeonites and augites from Whin Sill dolerite cores from Throckley (Northumberland) are shown by electron microscopy to be unmixed. The lamellae are 40 Å wide at the margins of the sill and up to 3200 Å wide at the centre. Homogeneous pyroxenes also occur with a composition intermediate between the pigeonite and augite. Electron diffraction patterns of the unmixed grains show that the augite contains pigeonite lamellae and the pigeonite contains augite lamellae. From the application of simple diffusion theory it is suggested that the size of the lamellae is dependent on the rate of cooling of the sill.  相似文献   

5.
Electron-microprobe analyses of coexisting Ca-rich and Ca-poor pyroxenes from rocks of the Skaergaard intrusion indicate that their compositional relationships are controlled by two types of tie-line in the pyroxene quadrilateral. Solidus tie-lines join bulk compositions of pairs of pyroxenes that crystallized contemporaneously from a melt at equilibrium. Subsolidus tie-lines join the compositions of lamellae and host materials in pyroxene exsolution intergrowths. The solidus tie-line for a pair of pyroxenes in a specimen and their subsolidus tie-lines do not coincide and the subsolidus tie-line for inverted pigeonite is further from the hedenbergite-ferrosilite join of the quadrilateral than that for augite.The orientation of solidus tie-lines within the pyroxene quadrilateral indicates that during the simultaneous crystallization of two pyroxenes from the Skaergaard magma there was similar partitioning of Mg and Fe in the two phases relative to the melt. The relationship of the subsolidus tie-lines of a pair of coexisting pyroxenes to their solidus tie-line indicates that during the formation of exsolution intergrowths, changes in the composition of the pyroxene matrix involved primarily a change in its CaMg+Fe ratio while those of the lamellae involved both a change in their CaMg+Fe ratio and in their MgFe ratio. The MgFe ratio of the augite lamellae in inverted pigeonite progressively increased with cooling while that of the Ca-poor lamellae in augite progressively decreased with cooling.  相似文献   

6.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

7.
The mineralogy and petrology of volcanic and plutonic rocks from the island of Grenada are described. The volcanic rocks include basanitoids, alkalic and subalkalic basalts, andesites and dacites. Phenocryst phases in the basanitoids and basalts are olivine (Fo90–71), zoned calcic augite, spinel ranging from ferrian pleonaste through chromite to titaniferous magnetite, and plagioclase. Some of the basalts contain pargasitic amphibole. Andesites and dacites generally contain hypersthene and augite, and one pigeonite-hypersthene-augite-bearing andesite was found. Apatite commonly occurs as a phenocryst in the andesites and dacites and quartz is present in some dacites as well as being a possible xenocryst in both alkalic and subalkalic basalts. Plutonic cumulates found as ejected fragments in tuffs and ashes are composed of variable proportions of olivine, magnetite, calcic augite, amphibole and plagioclase. One peridotitic (ol-cpx-opx) fragment was found but spinel or garnet peridotitis are absent. Despite the alkalic nature of the association, calcalkalic characteristics such as calcic plagioclase, restricted Feenrichment in coexisting pyroxenes and generally low TiO2 content relative to oceanic suites are present in Grenada. Estimates of conditions of equilibration of the basanitoids with potential upper mantle materials using the results of high-pressure experiments are compared with estimates from thermodynamic data. Equating and basanitoid with hypothetical garnet peridotite assemblages gives a pressure and temperature of equilibration in the region of 35–38 kbar and 1550–1625 ° K. Experimental results are not supportive of these estimates.  相似文献   

8.
Crystallochemistry and origin of pyroxenes in komatiites   总被引:1,自引:1,他引:0  
We present a detailed mineralogical and major- and trace-element study of pyroxenes in two Archean komatiitic flows in Alexo, Canada. The pyroxenes in spinifex-textured lavas commonly are zoned with cores of magnesian pigeonite and rims of augite. Concentrations of incompatible trace elements are low in pigeonite and jump to higher values in the augite mantles, a variation that can be modelled using accepted partition coefficients and assuming crystallization from komatiitic liquids. Crystallization sequences are very different in different parts of both flows. In the flow top, the sequence is olivine followed by augite: deeper in the spinifex sequence, pigeonite crystallizes after olivine, followed by augite; in lower cumulates, orthopyroxene or augite accompany olivine. In spinifex lavas, pigeonite crystallizes sooner than would be predicted on the basis of equilibrium phase relations. We propose that contrasting crystallization sequences depend on the position in the flow and on the conditions of crystal growth. In the flowtop, rapid cooling causes quench crystallization. Deeper in the spinifex layer, constrained growth in a thermal gradient, perhaps augmented by Soret differentiation, accounts for the early crystallization of pigeonite. The cumulus minerals represent a near-equilibrium assemblage. Augites in Al-undepleted Archean komatiites in various localities in Canada and Zimbabwe have high moderate to high Wo contents but their Mg# (Mg/(Mg + Fe) are lower than in augites in komatiites from Barberton, South Africa. We attribute the combination of high Wo and high Mg# in Barberton rocks to the unusually high CaO/Al2O3 of these Al-depleted komatiites.  相似文献   

9.
The partitioning of Mg and Fe2+ between coexisting olivines and orthopyroxenes in the system MgO-FeO-SiO2 has been investigated experimentally at 1173, 1273, 1423 K and 1.6 GPa over the whole range of Mg/Fe ratios. The use of barium borosilicate as a flux to promote grain growth, and the identification by back-scattered electron imaging of resulting growth rims suitable for analysis by electron microprobe, results in coexisting olivine and orthopyroxenene compositions determined to a precision of±0.003 to 0.004 in molar Fe/(Mg+Fe). Quasi-reversal experiments were performed starting with Mg-rich olivine and Fe-rich orthopyroxene (low KD) and vice versa (high KD), which produced indistinguishable results. The distribution coefficient, KD, depends on composition and on temperature, but near Fe/(Mg+Fe)=0.1 (i.e. mantle compositions) these effects cancel out, and KD is insensitive to temperature. The results agree well with previous experimental investigations, and constrain the thermodynamic mixing properties of Mg-Fe olivine solid solutions to show small near-symmetric deviations from ideality, with between 2000 and 8000 J/mol. Multiple non-linear least squares regression of all data gave a best fit with (implying 5450 J/mol at 1 bar) and , but the two W G parameters are so highly correlated with each other that our data are almost equally well fit with , as obtained by Wiser and Wood. This value implies , apparently independent of temperature. Our experimental results are not compatible with the assessment of olivine-orthopyroxene equilibria of Sack and Ghiorso.  相似文献   

10.
This investigation describes five Mesozoic dolerite dikes which intrude Paleozoic metamorphic and igneous rocks of the Inner Piedmont of western South Carolina. The dikes are vertical or nearly so and strike approximately N40° W. Three major northeast-trending faults also occur in the study area. Left lateral displacement of one dolerite is documented at a locality near Cleveland, South Carolina. Elsewhere, several of the dolerite dikes appear to terminate at or near the faults. — The dolerite dikes have subophitic to microporphyritic textures and consist principally of plagioclase (generally An70–80), olivine (dominantly Fo80–90) and augite with subordinate pigeonite, titanomagnetite, chromite and brown, partly glassy mesostasis. In one dike pyroxene compositions trend from augite to ferroaugite in contrast to an augitesubcalcic augitepigeonite trend characteristic of the other dolerites. The contrasting trends primarily result from differences in SiO2 abundance in the dolerite magmas. — Major and trace element analyses indicate the presence of two different olivine-normative dolerite magma types. The two magma types are not related by near surface crystal fractionation. Models for genesis of the olivine-normative dolerite magmas by partial melting of a plagioclase peridotite upper mantle source region are presented. The models require that the source region be enriched in LREE and incompatible elements such as Rb, Ba, Hf and Th relative to Cl chondritic abundances. One magma type appears to represent a primary dolerite magma that ascended from the source region with little subsequent compositional change. The second magma type most likely experienced assimilation of clinopyroxene-garnet (eclogite) during ascent, thereby acquiring a REE pattern with a less steep negative slope for the LREE and a slight positive slope in the HREE.  相似文献   

11.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

12.
The phenocryst assemblage of cummingtonite, orthopyroxene, quartz, titanomagnetite and ilmenite in rhyolites of New Zealand has been used to calculate P total and . The values of P total and depend strongly upon whether an ideal mixing, or an ordered, model is used for the solid-solutions, but in both cases P total.The rhyolite magma contained over 9 per cent water (by weight) when the cummingtonite phenocrysts precipitated, and possibly as much as 12 per cent, so that it is surprising that one of these rhyolites is a coherent lava. The calculated values of P total and are very sensitive to uncertainty in both the composition of the solid-solutions and temperature. Calculations show that >0.7–0.8 P total for cummingtonite to precipitate in rhyolites, and that iron-rich olivine and cummingtonite could only exist in rhyolites over a small temperature range at a pressure near 5 kilobars. Hornblende phenocrysts co-existing with fayalitic olivine in rhyolites accordingly have a very low activity of Mg7Si8O22(OH)2.  相似文献   

13.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

14.
Although the Beaver Bay ferrogabbro is a small-scale layered intrusion, Ca-rich pyroxenes show a strong iron enrichment during fractionation, ranging from augite (Mg38Fe24 Ca38) to ferrohedengergite (Mg10Fe48Ca42). Ca-poor pyroxenes from intermediate pigeonite (Mg39Fe50Ca11) to ferriferous pigeonite (Mg27Fe65Ca8) occur as intercumulus minerals. The pyroxenes from the non-layered Beaver River gabbro are included in the overall pyroxene fractionation trend of the Beaver Bay gabbro complex. The pyroxene trend of the Beaver Bay gabbro complex is similar to those of the Skaergaard and Bushveld; however, there is a slight difference in that the Ca-rich pyroxenes of Beaver Bay (having Mg content over 30%) are slightly richer in Ca than either the Skaergaard or Bushveld augites.  相似文献   

15.
We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Alnö, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ~640°C. This caused (1) metasomatism of the gneiss, by the reaction: ${\hbox{biotite} + \hbox{quartz} + \hbox{oligoclase} + \hbox{K}_{2} \hbox{O} +\,\hbox{Na}_{2}\hbox{O} \pm \hbox{CaO} \pm \hbox{MgO} \pm \hbox{FeO} = \hbox{albite} + \hbox{K-feldspar} + \hbox{arfvedsonite} + \hbox{aegirene-}\hbox{augite} + \hbox{H}_{2} \hbox{O} + \hbox{SiO}_{2}}We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Aln?, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ∼640°C. This caused (1) metasomatism of the gneiss, by the reaction: , (2) metasomatism of carbonatite by the reaction: calcite + SiO2 = wollastonite + CO2, and (3) isotopic homogenization of the metasomatised region. We suggest that reactive weakening caused the metasomatised region to widen and that the metasomatic reactions are chemically (and possibly mechanically) coupled. Spatial separation of reaction and isotope fronts in the carbonatite conforms to a chromatographic model which assumes local calcite–fluid equilibrium, yields a timescale of 102–104 years for fluid–rock interaction and confirms that chemical transport towards the carbonatite interior was mainly by diffusion. We conclude that most silicate phases present in the studied carbonatite were acquired by corrosion and assimilation of ijolite, as a reactive by-product of this process and by metasomatism. The carbonatite was thus a relatively pure calcite–H2O−CO2–salt melt or fluid.  相似文献   

16.
In the present work we studied Mg-ilmenite megacrysts from the Arkhangelsk kimberlites (the Kepino kimberlite field and mantle xenoliths from the Grib pipe). On the basis of isotopic (Rb/Sr, Sm/Nd, δ18O) and trace-element data we argue that studied Mg-ilmenite megacrysts have a genetic relation to the “protokimberlitic” magma, which was parental to the host kimberlites. Rb-Sr ages measured on phlogopite from ilmenite-clinopyroxenite xenoliths and the host Grib kimberlite overlap within the error (384 Ma and 372 ± 8 Ma, respectively; Shevchenko et al., 2004) with our estimation of the Kotuga kimberlite emplacement (378 ± 25 Ma). Sr and Nd isotopic compositions of megacrysts are close to the isotopic composition of host kimberlites (Mg-ilmenites from kimberlites have 87Sr/86Sr(t = 384) = 0.7050–0.7063, ?Nd(t = 384) = + 1.7, +1.8, ilmenite from ilmenite-garnet clinopyroxenite xenolith has 87Sr/86St(t = 384) = 0.7049, ?Nd(t = 384) = +3.5). Oxygen isotopic composition of ilmenites (δ18O = +3.8–+4.5‰) is relatively “light” in comparison with the values for mantle minerals (δ18O = +5–+6‰). Taking into account ilmenite-melt isotope fractionation, these values of δ18O indicate that ilmenites could crystallize from the “protokimberlitic” melt. Temperatures and redox conditions during the formation of ilmenite reaction rims were estimated using ilmenite-rutile and titanomagnetite-ilmenite thermo-oxybarometers. New minerals within the rims crystallized at increasing oxygen fugacity and decreasing temperature. Spinels precipitated during the interaction of ilmenite with kimberlitic melt at T = 1000–1100°C and oxygen fugacity $\Delta \log f_{O_2 }$ [QFM] ≈ 1. Rims comprised with rutile and titanomagnetite crystallized at T ≈ 1100°C, $\Delta \log f_{O_2 }$ [NNO] ≈ 4 and T = 600–613°C, $\Delta \log f_{O_2 }$ [QFM] ≈ 3.7, respectively. Rutile lamellae within ilmenite grains from clinopyroxenitic xenolith were formed T ≥ 1000–1100°C and oxygen fugacity $\Delta \log f_{O_2 }$ [NNO] = ?3.7. Since the pressure of clinopyroxene formation from this xenolith was estimated to be 45–53 kbar, redox conditions at 135–212 km depths could be close to $\Delta \log f_{O_2 }$ [NNO] = ?3.7.  相似文献   

17.
The model for the thermodynamic properties of multicomponent pyroxenes (Part I) is calibrated for ortho- and clinopyroxenes in the quadrilateral subsystem defined by the end-member components Mg2Si2O6, CaMgSi2O6, CaFeSi2O6, and Fe2Si2O6. This calibration accounts for: (1) Fe-Mg partitioning relations between orthopyroxenes and augites, and between pigeonites and augites, (2) miscibility gap features along the constituent binary joins CaMgSi2O6-Mg2Si2O6 and CaFeSi2O6-Fe2Si2O6, (3) calorimetric data for CaMgSi2O6-Mg2Si2O6 pyroxenes, and (4) the P-T-X systematics of both the reaction pigeonite=orthopyroxene+augite, and miscibility gap featurs, over the temperature and pressure ranges 800–1500°C and 0–30 kbar. The calibration is achieved with the simplifying assumption that all regular-solution-type parameters are constants independent of temperature. It is predicated on the assumptions that: (1) the Ca-Mg substitution is more nonideal in Pbca pyroxenes than in C2/c pyroxenes, and (2) entropies of about 3 and 6.5 J/K-mol are associated with the change of Ca from 6- to 8-fold coordination in the M2 site in magnesian and iron C2/c pyroxenes, respectively. The model predicts that Fe2+-Mg2+ M1-M2 site preferences in C2/c pyroxenes are highly dependent on Ca and Mg contents, with Fe2+ more strongly preferring M2 sites both in Ca-rich C2/c pyroxenes with a given Fe/(Fe+Mg) ratio, and in magnesian C2/c pyroxenes with intermediate Ca/(Ca+Fe+Mg) ratios.The proposed model is internally consistent with our previous analyses of the solution properties of spinels, rhombohedral oxides, and Fe-Mg olivines and orthpyroxenes. Results of our calibration extend an existing database to include estimates for the thermodynamic properties of the C2/c and Pbca pyroxene end-members clinoenstatite, clinoferrosilite, hedenbergite, orthodiopside, and orthohedenbergite. Phase relations within the quadrilateral and its constitutent subsystems are calculated for temperatures and pressures over the range 800–1700°C and 0–50 kbar and compare favorably with experimental constraints.  相似文献   

18.
Exsolved augite pyroxenes from the ferromonzonite border facies of the ferrosyenite in the Laramie Anorthosite Complex have been studied with the transmission electron microscope and the electron microprobe to determine their exsolution histories. The Lindsley and Andersen (1983) geothermometer gives initial crystallization temperatures of 1000° C for the bulk augite crystal (Wo32 En22 Fs46). Exsolved lamellae are predominantly pigeonites with very low calcium contents (Wo1–3 En23–24 Fs71–74) and have formation temperatures estimated to be in the range of 600 to 975° C. The uniform compositions of lamellae and hosts, despite the range in lamellar size and orientation, suggest that either 1) the ferromonzonite experienced an extended plateau in cooling or a reheating event at 600 to 650° C or 2) the pyroxenes recorded a blocking temperature. Two-feldspar geothermometry on exsolved feldspars also records 600° C and suggests that these low temperatures are not blocking temperatures.  相似文献   

19.
Ninety-seven mineral phases consisting of ten chloritoids, fifteen epidotes, sixteen garnets, four sphenes, seven rutiles, seven pyroxenes, thirteen blue amphiboles, two green amphiboles, eleven phengites, two paragonites, a mariposite, seven chlorites, and two specimens of albite were obtained from the metamorphic rocks of Île de Groix, and their chemical, physical, optical and X-ray properties determined. The chloritoids are all optically positive, monoclinic polymorphs with large 2V, moderate refractive indices and characterized by high densities. Their fluorine contents have been used to propose a new upper limit for OHF substitution in the chloritoid structure, suggesting that partial pressure of fluorine might modify the stability of chloritoids from that determined in pure H2O. The epidotes belong to the Al-Fe epidote series and are epidote sensu stricto. The almandine-rich garnets and the chloromelanites are metastable relics in the glaucophane schists. The grossular contents of the calcareous schist garnets are believed to have become depressed under high CO2 pressure and the low Tschermak's contents of the pyroxenes are to be explained by equilibria involving epidote at high and low temperature when the Tschermak's components will break down to epidote group minerals. The sphenes contain appreciable amounts of combined water, fluorine substituting for oxygen and aluminium substituting for silicon and titanium. The presence of H3O+ is suspected in a specimen of blue amphibole. The barroisite has a composition between glaucophane and hornblende. On account of its high Fe3+ content it is believed to have formed under higher P O 2 than the blue amphiboles. The paragonites which occur in the ohloritoid veins are unstable in the potassium-rich aluminous schists. The phengites show a tendency towards sericitic composition due to post-glaucophanisation readjustments under the lower pressure conditions of the greenschist facies. Some of the Fe3+ contents of the chlorites are interpreted as due to oxidation of ferrous iron, e.g. 2 [Fe(OH)2]2FeOOH + H2. The minerals show strong chemical control of the host rock and their Mn contents are directly related to those of the minerals from which they have evolved through retrogression.Chloritoids and epidotes that are not associated with garnets contain higher amounts of manganese; similarly, the two blue amphiboles with the highest FeMg ratios were obtained from rocks in which garnet has not appeared. It is therefore believed that ottrelite and piemontite would be stable only at the lowest subfacies of the greenschist facies. Also, the ironrich amphiboles must have evolved from low-grade iron-aluminium chlorites, since on the appearance of garnet in a schist iron-aluminium chlorites react with quartz to give almandine and Mg-rich chlorites. The Fe2+Mg ratios of the blue amphiboles therefore reflect the grade of the original schist in which the minerals formed.  相似文献   

20.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号