首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of the ground-based optical observations of sunlit auroras, performed at Lovozero and Apatity observatories on April 10 (event 1) and April 27, 2007(event 2), are presented. The observations were performed in the (OI) 557.7 nm emission, using a new equipment based on a Fabry-Pérot interferometer connected to a PhotonMAX CCD camera. During event 1, the observations were performed in the Harang discontinuity region at a low magnetic disturbance. It has been indicated that an auroral arc was located in the polar part of the eastward electrojet, and the arc position coincides with the equatorward boundary of structured precipitation (b2e). During event 2, auroras were observed within the average statistical boundaries of the auroral oval and the region of structured precipitation under the conditions of rather high geomagnetic activity. However, during the period of low geomagnetic activity, discrete auroras were registered at a geomagnetic latitude of ~64° on that day, which is 3°—4° equatorward of the structured precipitation region. Such a low latitudinal position of auroras can be explained by the effect of a high solar wind velocity, which was ~580 km/s during the period of observations.  相似文献   

2.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

3.
The position of the auroral oval poleward and equatorward boundary projections on the equatorial plane in the nightside MLT sector during magnetically quiet periods (|AL| < 200 nT, |Dst| < 10 nT) has been determined. The oval boundary positions were determined according to the precipitation model developed at Polar Geophysical Institute (http://apm.pgia.ru/). The isotropy of the averaged plasma pressure and the experimentally confirmed balance of pressures during the nighttime have been taken into account. The morphological mapping method has been used to map the oval poleward and equatorward edges without the use of any magnetic field model on the assumption that the condition of magnetostatic equilibrium is valid. Ion pressures at ionospheric altitudes and in the equatorial plane have been compared. It has been shown that the auroral oval equatorward boundary in the midnight sector is localized at geocentric distances of ~7 RE, which is in good agreement with the position of the energetic particle injection boundary in the equatorial plane. The oval poleward edge is localized at the ~10 RE geocentric distance, which is in good agreement with the position of the equatorward boundary of the region with a high turbulence level in the Earth’s magnetosphere plasma sheet.  相似文献   

4.
The dynamics of the auroral precipitation boundaries in the daytime (0900–1200 MLT) and nighttime (2100–2400 MLT) sectors during two strong magnetic storms of February 8–9, 1986, and March 13–14, 1989, with a Dst value at a maximum of approximately ?300 and ?600 nT, respectively, are studied using the DMSP satellite data. It is shown that, during the main phase of a storm, a shift to lower latitudes of the poleward and equator ward boundaries of the daytime precipitation is observed. In the nighttime sector, the equatorward boundary of the precipitation also shifts to lower latitudes, whereas the position of the poleward boundary depends weakly on the magnetic activity level even in the periods of very strong magnetic disturbances. The increase in the polar cap area occurs mainly due to the equatorward shift of the daytime precipitation. A high correlation degree between the equatorward shift of the poleward boundary of the daytime precipitation and the position of the equatorward boundary of the precipitation at the nighttime side of the Earth is demonstrated. The analysis of the events shows that (1) the magnetic activity level in the nighttime sector of the auroral zone influences considerably the position of the daytime precipitation boundaries during magnetic storms and that (2) the ring current inputs considerably into the value of the Dst variations.  相似文献   

5.
Flow bursts within the ionosphere are the ionospheric signatures of flow bursts in the plasma sheet and have been associated with poleward boundary intensifications (PBIs). Some PBIs extend equatorward from the polar cap boundary, where they can be roughly divided into north–south-aligned and east–west-aligned structures. In this paper, we present two flow burst events observed by the new Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) in the pre-midnight auroral zone on 28 April 2007, one towards the west and the other towards the east. In both cases, enhanced flows lasted for about 8–10 min with peak velocities exceeding 1500 m/s. The concurrently measured electron density showed that the flow bursts occurred in low conductivity regions. However, near the poleward (equatorward) edge of the westward (eastward) flow burst, strong electron density enhancements were observed in the E region, indicating the presence of discrete auroral arcs. Auroral images from the Polar spacecraft were available at the time of the eastward flow burst and they indicate that this burst was associated with an east–west-aligned auroral structure that connected at later MLT to a north–south structure. In addition, simultaneous precipitating particle energy spectrum measured by the the Defense Meteorological Satellites Program (DMSP) F13 satellite reveals that this auroral structure resulted from mono-energetic electron precipitation associated with a significant field-aligned potential drop. These observations show direct evidence of the relationship between flow bursts, field-aligned currents and auroral intensifications, and suggest that eastward/westward flow bursts are associated with east–west-oriented PBI structures that have extended well within the plasma sheet. This is in contrast to the equatorward-directed flow that has been previously inferred for PBIs near the polar cap boundary and for north–south auroral structures. This paper illustrates the use of the PFISR radar for studying the magnetosphere–ionosphere coupling of flow bursts.  相似文献   

6.
Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5/10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.  相似文献   

7.
Based on results of the simultaneous TV observations at Barentsburg high-latitude observatory and Lovozero auroral observatory and using the IMAGE auroral luminosity images, the auroral fine structure and dynamics has been studied during the substorm of December 26, 2000, when the auroral luminosity distribution represented a double oval. It has been indicated that the interaction between the processes proceeding in different magnetospheric regions, the projections of which are the poleward and equatorward edges of the double oval, is observed in auroras in the process of substorm development.  相似文献   

8.
The position of the auroral luminosity equatorward boundary during the interaction between the Earth’s magnetosphere and isolated solar wind streams from different solar sources has been statistically studied based on the ground and satellite observations of auroras. These studies continue the series of the works performed in order to develop the technique for predicting auroras based on the characteristics of the interplanetary medium and auroral disturbances. The dependences of the minimal position of the auroral luminosity equatorward boundary (Φ′) on the values of the azimuthal component of the interplanetary electric field (E y ) and AL indices of magnetic activity, averaged over 6 and 24 h, are presented. The distribution limits for each type of isolated solar wind streams on the Φ′-E y and Φ′-AL planes have been determined.  相似文献   

9.
This review is devoted to auroral fading before beginning of the substorm active phase. This initial stage of the active phase called breakup is accompanied by a sharp brightening of auroras and their rush toward the pole. Auroral fading before breakup was first detected in discrete auroras in the nightside sector and consisted in that a short-term decrease in brightness of an arc moving toward the equator below the level observed during the preliminary phase was observed during the substorm preliminary phase 2–3 min before breakup. During fading, the velocity of equatorward motion of auroral arcs decreased up to their complete stoppage. Auroral fading in the noon sector was registered simultaneously with fading on the Earth’s nightside before the beginning of the active phase. Short-term background fading was also observed both equatorward and poleward of an arc on the nightside. It was subsequently indicated that similar fading is observed in various geophysical phenomena. It was detected that a radar aurora signal fades before breakup, if auroral substorm is observed in a radar pattern and substorm source is located under good aspect conditions. Riometer absorption decreases simultaneously with auroral fading. Geomagnetic pulsations decay on dayside and nightside immediately before breakup. Such a multiform manifestation of fading in various geophysical phenomena indicates that fading is related to some global processes proceeding in the magnetosphere when energy accumulation in this region comes to the end before its explosive release into the polar ionosphere.  相似文献   

10.
The energy of precipitating particles that cause auroras can be characterized by the ratio of different atom and molecule emissions in the upper atmospheric layers. It is known that the spectrum of precipitating electrons becomes harder when substorms develop. The ratio of the I 6300 red line to the I 5577 green line was used to determine the precipitating-electron spectrum hardness. The I 6300/I 5577 parameter was used to roughly estimate the electron energy in auroral arcs observed in different zones of the auroral bulge at the bulge poleward edge and within this bulge. The variations in the emission red and green lines in auroral arcs during substorms that occurred in the winter season 2007–2008 and in January 2006 were analyzed based on the zenith photometer and all-sky camera data at the Barentsburg and Longyearbyen (LYR) high-latitude observatories. It has been indicated that the average value of the I 6300/I 5577 emission ratio for arcs within the auroral bulge is larger than this value at the bulge poleward edge. This means that the highest-energy electron precipitation is observed in arcs at the poleward edge of the substorm auroral bulge.  相似文献   

11.
The interrelation between sudden increases in the solar wind dynamic pressure, auroral proton flashes on the dayside equatorward of the oval, and geomagnetic pulsations in the Pc1 range is considered on the basis of simultaneous observations of the solar wind plasma parameters, proton auroras on the IMAGE satellite, and geomagnetic pulsations at the Lovozero Observatory. It is indicated that proton luminosity flashes were observed in 70% of cases equatorward of the auroral oval during sudden changes in the solar wind pressure. In this case, flashes of proton auroras were observed in 85% of cases during sudden changes in the pressure, which were related to interplanetary shocks. Increases in pressure during tangential discontinuities were accompanied by flashes of proton auroras only in 45% of cases. When the ground station was conjugate to the region occupied by a proton aurora flash, the appearance or intensification of existent pulsations in the Pc1 range was observed in 96% of cases. When the ground station was not conjugate to the region of a proton luminosity flash, the response in geomagnetic pulsations was observed in 32% of events. When a sudden change in the solar wind pressure was not accompanied by a proton luminosity flash, the response in pulsations in the Pc1 range was hardly observed.  相似文献   

12.
According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double) auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs) of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1) discrete auroral arcs are always situated polewards from (or very close to) the IB of > 30-keV electrons, whereas (2) the IB of the > 30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm) conditions in the premidnight-nightside (18– 01-h) MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB), the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1) may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.  相似文献   

13.
On the basis of observations for the IGY period (visoplots) it is shown, that during magnetic storms diffuse glow is detected at all latitudes between the lowest latitude of the visually observed auroral glow at the zenith and the auroral oval. The diffuse glow region spatially coincides with the region of soft electron precipitation extending equatorward from the boundary of the oval to the latitude of the plasmopause projections along the magnetic force lines to the ionosphere. Using published materials on the diffuse glow dynamics and SAR arcs at the Yakutsk meridian, as well as simultaneous measurements of the DMSP F9 satellite, we discuss the contribution from low-energy electron precipitation transfered via convection toward Earth from the magnetosphere’s plasma sheet to excitation of 630.0 nm emission in low-intensity (<1.0 kR) SAR arcs.  相似文献   

14.
Special methods for processing TV images have been used to study the characteristics of nighttime auroras based on the observations at high-latitude observatories on Spitsbergen. Weak subvisual auroras (SVAs), originating 3°–4° north of brighter auroras in the auroral oval, have been detected in the interval 1900-0400 MLT. The average lifetime of SVAs is approximately 7 min, and the average velocity of the equatorward shift is ~0.6 km/s. SVAs were observed during relatively quiet periods, when the IMF B z component is mainly positive. However, SVAs are not polar-cap auroras since they are oriented from east to west rather than toward the Sun. The optical observations indicate that the SVA intensity is 0.2–0.5 and 0.1–0.3 kR in the 630 and 557.7 nm emissions, respectively. The average ratio of the emission intensities (I 5577/I 6300) is about 0.5. According to the direct satellite observations, the SVA electron spectrum has a maximum at 0.4–1.0 keV. In this case the energy flux of precipitating electrons is approximately an order of magnitude as low as such a flux in brighter auroral arcs in the auroral oval.  相似文献   

15.
The effect of the interplanetary magnetic field (IMF) By component on the dayside auroral oval from Viking UV measurements for March–November 1986 is studied. Observations of dayside auroras from Viking UV images for large positive (15 cases) and negative (22 cases) IMF By (∣By∣>4 nT), suggest that: (1) the intensity of dayside auroras tends to increase for negative IMF By and to decrease for positive By, so that negative IMF By conditions seem preferable for observations of dayside auroras; (2) for negative IMF By, the auroral oval tends to be narrow and continuous throughout the noon meridian without any noon gap or any strong undulation in the auroral distribution. For positive IMF By, a sharp decrease and spreading of auroral activity is frequently observed in the post-noon sector, a strong undulation in the poleward boundary of the auroral oval around noon, and the formation of auroral forms poleward of the oval; and (3) the observed features of dayside auroras are in reasonable agreement with the expected distribution of upward field-aligned currents associated with the IMF By in the noon sector.  相似文献   

16.
The simultaneous measurements of the boundary of the trapped radiation region, where auroral electrons precipitate, on the Meteor-3M satellite (the circular polar orbit at an altitude of ∼1000 km) and the westward electrojet dynamics during the main phase of a strong (Dst = −263 nT) magnetic storm that occurred on May 15, 2005, are analyzed. At the end of the first hour of the storm main phase, the nightside boundary of the trapped radiation region and the peak of the precipitating electron fluxes with a energies of ∼1 keV shifted toward the Earth to L ∼ 3. The westward electrojet center approached the same L shell. Near the boundary of the trapped radiation region, the auroral electron spectrum had the shape of typical inverted V. The differential spectrum maximum shifted to an energy of ∼100 eV, when the latitude decreased by ∼1°. The nightside boundary of the trapped radiation region, the electron precipitation equatorward boundary, and the westward electrojet center are compared with the known empirical dependences of the position of these structures on the Dst variation amplitude.  相似文献   

17.
本文利用中国北极黄河站多波段全天空极光观测数据,选取稳定的日侧极光弧,统计研究了极光强度比I_(557.7)/I_(630.0)与极光发光强度I_(557.7)的相关关系.发现I_(557.7)在午前暖点和午后热点区附近出现极大值,分别为2.2kR和2.9 kR;而I_(630.0)在磁正午出现极大值,为1.5kR.当I_(557.7)从0.1kR增加到10kR时,极光强度比I_(557.7)/I_(630.0)也由0.2增加到9.结合DMSP卫星探测的沉降粒子能谱数据,找到17个DMSP卫星穿越黄河站上空极光弧的事件,共穿越40条极光弧.得到了沉降电子的平均能量正比于极光强度比I_(557.7)/I_(630.0),沉降电子的总能通量正相关于极光强度I_(557.7)的关系式.利用该关系式反演所有极光弧的电子能谱,发现在午前和午后扇区,产生极光弧的沉降电子主要来源于等离子体片边界层;在高纬出现强度较弱的弧,对应等离子体幔区域.在磁正午附近,沉降电子的平均能量较低,极光弧处于低纬一侧,粒子源区主要是低纬边界层.  相似文献   

18.
Different types of proton auroras observed by the IMAGE satellite equatorward of the proton aurora oval are briefly reviewed. These auroras are caused by the precipitation of energetic protons from the Earth’s magnetosphere during the development of the ion-cyclotron instability. In addition to the previously considered types of proton auroras (spots, evening arcs, and dayside flashes), a new type is described: longlasting proton auroras on the dayside. The scheme of interrelation between different proton auroras equatorward of the oval with the distribution of cold plasmaspheric plasma is given.  相似文献   

19.
Two features of giant pulsations (Pgs) which still require an explanation are firstly, why Pgs occur mainly in the early morning sector (i.e. 03:00-07:00 MLT) and not at other times of day, and secondly, why Pgs occur preferentially in a narrow latitudinal band (approximately 63○-68○ geomagnetic latitude). Using statistics from 34 Pg events observed by the EISCAT magnetometer cross, a comparison has been made between the location of the Pg resonant field lines and the equatorward edge of the auroral oval. The majority of these Pg events appear to occur just poleward of this boundary. Using these results, an explanation of the two features of Pgs as detailed above is made. This explanation involves the interaction of protons, which may be responsible for the Pg events, with the inner edge of the plasma sheet or with its ionospheric equivalent, the equatorward edge of the auroral oval.  相似文献   

20.
The optical observations on Heiss Island and the ion drift measurements on the DMSP F8 satellite were used to study the aurora characteristics and ionospheric convection before and after SC registered at 2330 UT on January 13, 1988. It has been indicated that two zones of luminosity can be distinguished in morning-time auroras during the quiet period before SC: the soft zone with auroral arcs and the harder diffuse auroral zone (equatorward of the first zone). After SC, a gradual smooth activation of auroras in both zones was followed (4–5 min later) by a more abrupt intensification of diffuse luminosity and by the appearance of numerous bright discrete auroras throughout the sky. In the diffuse auroral zone, the variations in the luminosity intensity with a period of 6–7 min were observed after SC. Auroral and geomagnetic field pulsations are closely correlated. During the quiet period before SC, sunward convection was concentrated in the soft precipitation region in the form of jets located in the vicinity of auroral arcs. After SC, considerable sunward convection was observed in the diffuse auroral zone. Peaks of the upward ion drift velocity were registered in the vicinity of auroral arcs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号