首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.  相似文献   

2.
The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-metasomatism in this gold deposit, some metasomatic K-feldspars from K-altered rocks are selected to measure their formation time by laser probe 40Ar-39Ar dating method. The new analyzing data show that these metasomatic K-feldspar formed during 202.6 Ma and 176.7 Ma, and the corresponding K-metasomatism and associated gold mineralization occurred in the early stage of Mesozoic era. The pulse intervals of K-metasomatism in the Hougou area are estimated to be about 4 Ma.  相似文献   

3.

This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.

  相似文献   

4.
New data on the age of epithermal gold-silver mineralization of Asachinskoe Deposit (southern Kamchatka) are obtained by the 40Ar/39Ar method of stage heating involving preirradiation of samples for 48 hours by fast neutron currents in a cadmium-plated reactor channel. Correlation with the earlier data on integral K/Ar dating and a laser variant of the 40Ar/39Ar method has been carried out. According to the structural orderliness revealed by high resolution X-ray analysis and infrared spectroscopy, potassic feldspars found in veins have been identified as a continuous series: maximum microcline → intermediate microcline → intermediate orthoclase → extreme orthoclase. The age of quartz-orthoclase vein 1 is 3.2 ± 0.2 Ma (the Piacenzian). A younger age, about 1.1 ± 0.3 Ma (the Early Pleistocene) is determined for a quartz-microcline vein with post-mineralization brecciation and recrystallization related to the basalt dike magmatism of this age.  相似文献   

5.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5 ± 0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5 ± 0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

6.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

7.
Zhao  Xinwei  Zhou  Jing  Ma  Fang  Ji  Jianqing  Deino  Alan 《中国科学:地球科学(英文版)》2020,63(5):662-673
Reconstruction of Quaternary environments, late Cenozoic geodynamics and evaluation of volcanic hazards, all depend on the precise delineation of eruptive stages. In recent years, laser ~(40)Ar/~(39)Ar dating methods have been widely used for dating young volcanic rocks, given their stable automated testing process, very low background level and high sensitivity, which meet the requirements for precise dating of young samples. This paper applied high-precision laser ~(40)Ar/~(39)Ar dating to the main volcanic units in the Tengchong area and obtained ages in the range of 0.025–5.1 Ma using conventional data processing methods. However, conventional dating highlighted issues related to very low radiogenic ~(40)Ar content, accidental errors and poor data stability, which led to huge age deviations. Moreover, lacking a unified timescale, conventional methods were unable to strictly define the stages of the Tengchong volcanic eruptions, leading to ongoing controversy. In this study, we applied a Gaussian mathematical model to deal with all 378 original ages from 13 samples. An apparent age-probability diagram,consisting of three independent waveforms, have been obtained. The corresponding isochron ages of these three waveforms suggest there were three volcanic eruptive stages, namely during the Pliocene(3.78±0.04 Ma), early Middle Pleistocene(0.63±0.03 Ma) and late Middle Pleistocene to early Late Pleistocene(0.139±0.005 Ma). These results accurately define eruptive stages in the Tengchong area.  相似文献   

8.
New high-precision single crystal sanidine 40Ar/39Ar ages for the Huckleberry Ridge Tuff (HRT), Yellowstone volcanic field, show that the three HRT members (A, B, and C) represent at least two different eruptions. The new 40Ar/39Ar ages (all ages calculated relative to the optimisation model of Renne et al., 2011) are: 2.135 ± 0.006 Ma, 2.131 ± 0.008 Ma, and 2.113 ± 0.004 Ma (2σ, full uncertainty propagation), for members A, B and C, respectively. Members A and B are within uncertainty of one another and both are more precise than, but in agreement with, previously published ages. Member C was erupted later than members A and B. HRT members A and B were deposited during the Reunion Normal Polarity Subchron (C2r.1n). Member C was deposited during Subchron C2r.1r. Previously published radiogenic and stable isotope data show that member C was sourced from an isotopically discrete magma with a higher fraction of crustal material than members A and B. The volume of the first HRT eruption is reduced by c. 12% from previous estimates and explosive eruptions from the Yellowstone volcanic field occurred more frequently, producing more homogeneous magma than was previously believed. High-precision 40Ar/39Ar dating is key for resolving the eruptive history of Yellowstone, temporal dissection of voluminous ignimbrites, and rigorous investigation of what constitutes a ‘super-eruption’.  相似文献   

9.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

10.
Zircon LA-ICP-MS U-Pb dating reveals that the Baimashan Pluton is composed mainly of late Indosinian (204.5±2.8 Ma-209.2±3.8 Ma) biotite granodiorites/monzonitic granites (LIGs) and early Yanshanian (176.7±1.7 Ma) two-micas monzonitic granites (EYGs), and the coeval (203.2±4.5 Ma-205.1±3.9 Ma) mafic microgranular enclaves (MMEs) are generally found in the former. In addition, the ages of cores within zircons from LIGs and MMEs ranging from 221.4±4.0 Ma to 226.5±4.1Ma provide evidence of multistage magma intrusion during Indosinian in the study area. Measured 3010±20.6 Ma of inherited zircon age suggests that there may be recycling Archaean curstal material in existence in this area. LIGs and EYGs share some similar geochemical features: subalkaline and peraluminous granites, enrichment of Th, U, K, Ta, Zr, Hf and LREE but depletion of Ba, Nb, P, Ti and Eu, low εNd(t) values but high (87Sr/86Sr)i ratios, and old T2DM (ca. 1.9-2.0 Ga). The behaviors of incompatible elements and REE are mainly dominated by fractional crystallization of plagioclase, K-feldspar, ilmenite and apatite, but that of Sr isotope mainly controlled by EC-AFC. They are crust-sourced and derived from partial melting of paleo-Proterozoic metagreywackes and related to biotite dehydration melting. LIGs are formed in post-collisional tectonic setting as crustal local extension and thinning during late Indosinian. But EYGs may be evolved products of congeneric granitic magma with LIGs formed in late Indoinian, which were emplaced again when crust underwent extensive thinning and extension in post-orogenic tectonic setting during Yanshanian in SC after undergoing EC-AFC. MMEs should be cognate enclaves and derived from liquid immiscibility of host magma.  相似文献   

11.
40Ar / 39Ar incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 m depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3–5 wt.%) yield reliable geochronological results. The 40Ar / 39Ar plateau ages obtained decrease from the top to the bottom of the profile (12.7 ± 0.1 to 7.6 ± 0.1 Ma at surface; 7.6  ± 0.2 to 6.1 ± 0.2 Ma at 42 m; and 7.1 ± 0.2 to 5.9 ± 0.1 Ma at 45 m; 6.6 ± 0.1 to 5.2 ± 0.1 Ma at 60 m), yielding a weathering front propagation rate of 8.9 ± 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and schists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 ± 3.1 t/km2/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with long-term saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations.  相似文献   

12.
A comprehensive volcanological study of the Albano multiple maar (Alban Hills, Italy) using (i) 40Ar/39Ar geochronology of the most complete stratigraphic section and other proximal and distal outcrops and (ii) petrographic observations, phase analyses of major and trace elements, and Sr and O isotopic analyses of the pyroclastic deposits shows that volcanic activity at Albano was strongly discontinuous, with a first eruptive cycle at 69±1 ka producing at least two eruptions, and a second cycle with two peaks at 39±1 and 36±1 ka producing at least four eruptions. Contrary to previous studies, we did not find evidence of magmatic or hydromagmatic eruptions younger than 36±1 ka. The activity of Albano was fed by a new batch of primary magma compositionally different from that of the older activity of the Alban Hills; moreover, the REE and 87Sr/86Sr data indicate that the Albano magma originated from an enriched metasomatized mantle. According to the modeled liquid line of descent, this magma differentiated under the influence of magma/limestone wall rock interaction. Our detailed eruptive and petrologic reconstruction of the Albano Maar evolution substantiates the dormant state of the Alban Hills Volcanic District. Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan An erratum to this article can be found at  相似文献   

13.
This paper has reported the first application of 40Ar/39 Ar dating to orthoclase from Qitianling granite. The resultant plateau ages yielded by three orthoclase specimens 2KL-17, 99LQ-2 and 2KL-31 (Note: The last one was taken from the part of granite which had been attributed to Cailing super-unit of the Indosinian Period by the former researchers) collected from the said granite are (139.57±2.79) Ma, (140.55±2.81) Ma and (144.91±2.90) Ma respectively. The above-mentioned ages represent the closed 40Ar/39 Ar age of the orthoclase. The consistency in age dating results, the similarity in geochemical characteristics and rock textures, and the NW-SE orientation of orthoclase phenocrysts almost throughout the granite, provide evidence for the intimate relationship between the Furong super-unit and the Cailing super-unit that form the main part of the granite, suggesting that they are products of comagmatic conjugate differentiation during the Late Jurassic. This paper also makes a comparison between the Qitianling granite and the Qianlishan granite.  相似文献   

14.
40Ar/39Ar age spectrum analyses of samples from Broken Hill, New South Wales, indicate that the region has experienced a complex thermal history following high-grade metamorphism, 1660 Ma ago. The terrain cooled slowly (~3°C Ma?1) until about 1570 Ma ago, when the temperature fell below about 500°C. Following granitoid emplacement ~1500 Ma ago, the region remained relatively cold until affected by a thermal pulse 520±40Ma ago, causing temperatures to rise to~350°C in some places. During this event, accumulated40Ar was released from minerals causing a significant Ar partial pressure to develop. Laboratory Ar solubility data combined with the40Ar/39Ar age spectra gives a local estimate of this partial pressure of ~10?4atm. The region finally cooled below 100°C about 280 Ma ago.40Ar/39Ar age spectrum analyses of hornblende, plagioclase and clinopyroxene containing excess40Ar are characterized by saddle-shaped age spectra. Detailed analysis of plagioclase samples reveals a complex diffusion behaviour, which is controlled by exsolution structures. This effect, in conjunction with the presumed different lattice occupancy of excess40Ar with respect to radiogenic40Ar, appears to be responsible for the saddle-shaped age spectra.  相似文献   

15.
The Pengjiakuang, Dazhuangzi and Fayunkuang gold deposits, located on the northern margin of the Mesozoic Jiaolai Basin, east of Shandong Province, are controlled by a low-angle normal fault. Gold ores are typically brecciated, veinlet and disseminated. The Ar-Ar and Rb-Sr isochron dating methods were adopted to date ores and lamprophyre dike. The results indicate that the age of the Pengjiakuang gold deposit is 117.33–118.42 Ma, that of the Dazhuangzi gold deposit is 117.39 Ma, and that of the Fayunkuang gold deposit is (128.49±7.2) Ma. The consistency in metallogenic age between the gold deposits on the margin of the Jiaolai Basin and the gold deposits (115–126 Ma) of the northern uplift area suggests that both were formed in the same metallogenic period. That is to say, the large-scale metallogeny of the Jiaodong region took place in late-Yanshannian ((120±10) Ma).  相似文献   

16.
Gneisses within an Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Biotites from non-retrograded segments of the gneiss terrane record40Ar/39Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376–2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Biotites in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant40Ar/39Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257±27 Ma (northwest) to 1751±23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The “saddle-shaped” nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes.Biotites in portions of the gneiss terrane which were completely recrystallized during Grenville metamorphism are petrographically and texturally distinct. A representative of this phase records a40Ar/39Ar plateau age of 2674±28 Ma. This date is markedly inconsistent with regional constraints on the timing of Grenville metamorphism, and indicates the presence of extraneous argon components. Both the extraneous and radiogenic argon components must have been liberated in constant proportions during experimental heating because the argon isotopic data yield a well-defined40Ar/36Ar vs.39Ar/36Ar isochron corresponding to an age (2658±23 Ma) similar to that defined by the plateau portion of the spectrum.The40Ar/39Ar biotite dates suggest that the effects of Grenville metamorphism extent 15–20 km northward into the Superior Province. The limit of this overprint is approximately coincident with the northernmost development of Grenville age thrust faults in the Archean terrane. Therefore, it is proposed that the northern margin of the Grenville Province in southwestern Labrador should be located along the northernmost Grenville thrust fault because this represents both a structural and a thermal discontinuity.  相似文献   

17.
A dating of two biotite samples taken from the meso- and low-temperature mylonites within the Shangyi-Chicheng fault belt on the north of the North China Craton yields 40Ar/39Ar isotopic ages of (399 ± 1) Ma and (263 ± 2) Ma, respectively. These data reflect an Early Devonian deformation and a Late Carboniferous retrograde metamorphism event along the fault, suggesting that the tectonic activities of the North China Craton in Paleozoic should be reconsidered.  相似文献   

18.
We examined air trapped in ancient ice from three shallow cores (<35 m deep) recovered from stagnant portions of the Mullins glacier, an 8 km long debris-covered alpine glacier in the McMurdo Dry Valleys that is overlain by several in-situ volcanic ash-fall deposits. Previously reported 40Ar/39Ar dates on ash-fall in the vicinity of the core sites average 4.0 Ma, and underlying ice is presumably as old in some areas. We analyzed the elemental and isotopic composition of O2, N2, and Ar and total air content of the glacial ice. We also dated the trapped air directly to an uncertainty of ±220 kyr (1σ) by measuring its 40Ar/36Ar and 38Ar/36Ar ratios. Our results suggest that the air analyzed is likely a mixture of ancient atmosphere trapped at the time of ice formation and more recent air introduced via cracks in the ice that penetrate to at least 33 m. The isotopic signatures of gases have been complicated by gas loss, as well as a mixture of thermal and gravitational fractionation. The oldest age estimated for the trapped air dates to 1.6 Ma, indicating that the original air is at least as old as 1.6 ± 0.2 Ma. A convergence to older ice ages with increasing depth in the deepest core analyzed (33 m) hints at the possibility that pristine air might be recovered at greater depths. Minor interstitial debris present in the glacial ice (<1%), along with geochemical evidence for in-situ microbial respiration, prohibit direct analysis of CO2. We measured the triple isotopic composition of O2 as a proxy for CO2 and infer that, in the air represented in our ice samples, CO2 concentrations are within the range observed over the last 800 ka.  相似文献   

19.
The Avanavero Dolerite intruding the Guiana Shield in western Suriname is a quartz gabbroic mass yielding a Rb-Sr isochron age of 1603 ± 27 Ma, while the mass has invaded basement with a Rb-Sr isochron age of 1810 ± 40 Ma (λ = 1.47 × 10?11/a; errors with 95% confidence level). From 61 K-Ar measurements on whole-rocks, sieve fractions of whole-rocks, density fractions and separated minerals it is evident that nearly all investigated samples, fractions and minerals (except microcline which suffered some argon loss) contain excess40Ar. This excess40Ar is very inhomogeneously distributed through the gabbroic mass. The bulk is stored in the plagioclase, in which mineral the excess40Ar attains unusually high values ranging from about 14 × 10?6 to around 150 × 10?6cm3 NTP/g. The excess40Ar contents of biotite, hornblende and the pyroxenes are comparable to published data.Two samples from a core drilling were studied in some detail. In graphs of radiogenic40Ar versus K, four mineral separates from one sample display a fairly good, but geochronologically meaningless linear arrangement roughly passing through the origin. Most density fractions from the other sample show a tendency towards an array parallel to the 1603 Ma reference isochron.It is assumed that the excess40Ar was acquired by the Avanavero Dolerite during a moderate tectonothermal event 1200 ± 100 Ma ago, when the40Ar partial pressure was much higher in the environmental basement complexes than in the basic mass.  相似文献   

20.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号