首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

2.

Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.

  相似文献   

3.
By observing, measuring the fluvial sediment grain size of mid-western segment of the Qilianshan Range and studying the correlation between the grain size and uplift of the plateau, we model the correlation. These models are applied to the Laojunmiao section and the process curve of the uplift of the northern Tibetan Plateau against age from 8.35 Ma is illustrated here. The process curve shows that the northern Tibetan Plateau surface has uplifted from the mean altitude of 900–3700 m since 8.35 MaBP. From 8.35 to 3.1 MaBP, the Tibetan Plateau uplifted slowly, uplifted amplitude is small, the total range is 420 m. From 3.1 MaBP up to now, the Tibetan Plateau uplifted tempestuously, showing that the uplift accelerated obviously later. It uplifted totally 2400 m. About 0.9 Ma ago, the northern Tibetan Plateau surface had uplifted to over 3000 m a.s.l., showing that the Tibetan Plateau surface had reached the cryosphere; and the mountain peaks had uplifted to more than 4000 m altitude, suggesting that there was a glacier developed on the mountains.  相似文献   

4.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

5.
The study on magnetic properties of the red clay indicates that the red clay and loesspaleosol sequence have a common magnetic mineralogy, with magnetite, maghemite, hematite (and possibly goethite) contributing to the magnetic behavior. The red clay magnetic susceptibility is also found to have a positive relation with extrafine superparamagnetic grains. This suggests that, like the Quaternary loess-paleosols, an ultrafine ferrimagnetic component produced during pedogenesis in the red clay under humid conditions also plays an important role in susceptibility enhancement in the soil units. This is supported by the correlation between Rb/Sr ratio and magnetic susceptibility. This signifies that, like the above loess-paleosol sequence, the magnetic susceptibility of the red clay can be used as a general proxy paleoclimatic indicator, although whether its susceptibility in the red clay is comparable to pedogenesis intensity and requires further investigation. Magnetic susceptibility variation in the red clay thus also provides an eolian/pedogenic record of paleoclimatic evolution. Study of the background susceptibility indicates that, on average, the absolute scale of the paleoclimatic shift from red clay development to Quaternary loess deposition is similar to the climatic shift from stage 5 (S1) to stage 2–4 (L1). This may suggest that during the Quaternary there is an evident strengthening of the absolute wind intensity to bring more (about double) coarser and less weathered (non-SP fraction) eolian magnetic input from the source regions to the Loess Plateau than during the Pliocene. The presence of eolian red clay since 7.5 Ma BP in central-northern China implies an important environmental change from the underlying Cretaceous red sandstone. The red clay development was closely related to global drying and climate cooling since the Cretaceous and closely associated with the abrupt uplift of the Qinghai-Xizang Plateau at about that time. This uplift of the plateau intensified the East Asia monsoon system and started red clay deposition.  相似文献   

6.

Ganzi loess represents the oldest Tibetan loess, its formation is the key to determining the readjustment of Tibetan atmospheric circulation and the relationship between Tibetan uplift and global climatic change. Detailed magnetostratigraphic study shows that the Ganzi loess was formed at about 1.13 MaBP. It also reveals that there are two notable climatic events occurring in 0.95–0.92 Ma and 0.65–0.5 Ma respectively. The both demonstrate that the Tibetan atmospheric circulation was readjusted and the Tibetan Plateau entered the cryosphere at 21.13 Ma, and the Tibetan glaciation might reach its maximum at ∼0.65–0.5 Ma.

  相似文献   

7.
The study on magnetic properties of the red clay indicates that the red clay and loess- paleosol sequence have a common magnetic mineralogy, with magnetite, maghemite, hematite (and possibly goethite) contributing to the magnetic behavior. The red clay magnetic susceptibility is also found to have a positive relation with extrafine superparamagnetic grains. This suggests that, like the Quaternary loess-paleosols, an ultrafine ferrimagnetic component produced during pe-dogenesis in the red clay under humid conditions also plays an important role in susceptibility enhancement in the soil units. This is supported by the correlation between Rb/Sr ratio and magnetic susceptibility. This signifies that, like the above loess-paleosol sequence, the magnetic susceptibility of the red clay can be used as a general proxy paleoclimatic indicator, although whether its susceptibility in the red clay is comparable to pedogenesis intensity and requires further investigation. Magnetic susceptibility variation in the red clay thus also provides an eo-lian/pedogenic record of paleoclimatic evolution. Study of the background susceptibility indicates that, on average, the absolute scale of the paleoclimatic shift from red clay development to Quaternary loess deposition is similar to the climatic shift from stage 5 (S1) to stage 2-4 (L1). This may suggest that during the Quaternary there is an evident strengthening of the absolute wind intensity to bring more (about double) coarser and less weathered (non-SP fraction) eolian magnetic input from the source regions to the Loess Plateau than during the Pliocene. The presence of eolian red clay since 7.5 Ma BP in central-northern China implies an important envi-ronmental change from the underlying Cretaceous red sandstone. The red clay development was closely related to global drying and climate cooling since the Cretaceous and closely associated with the abrupt uplift of the Qinghai-Xizang Plateau at about that time. This uplift of the plateau intensified the East Asia monsoon system and started red clay deposition.  相似文献   

8.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

9.
1 Introduction in China, with an area of 4400 km2 and a drainage area With the advancement of global change study, peo- of nearly 29,660 km2[2]. Occurring at a “climatic triple ple are paying more and more attention to the conti- junction” among the East Asian monsoon, Indian nental environment (in which we reside), its evolution Monsoon and the Westerly Jet Stream, it lies in the and its future tendency. As a component of the global transitional belt of the east monsoonal humid areas sys…  相似文献   

10.
The Cenozoic uplift of Qilian Mountains is critical to comprehend the uplift and extension of the Tibet Plateau as well as the formation of the first and second steps in China's topography. This study summarized dynamic stratigraphic realm comprehensively on the basis of stratigraphic correlation of different Cenozoic sedimentary basin regions of the Qilian Mountains and adjacent mountains. This facilitated the re-creation of the tectonic-sedimentary evolutionary process of the Qilian Mountains and their surrounding areas. The results indicate that during the Early Paleogene(Paleocene-Eocene), the Qilian Mountains were part of an uplift realm. During the Oligocene, Guide-Xining-Lanzhou-Linxia sag basin at the northern margin of the West Qinling Mountains came into being and was subjected to sedimentation. The Suli Basin located between the North and South Qilian paleo-uplifts began to form and undergo sedimentation. Intracontinental orogenic extrusion and basin detachment occurred at the Qilian Mountains during the Miocene, which caused successive uplifts of various mountains, including the Laji, South Qinghai,Jishi, Liupan, and South Shule Mountains. Until Pliocene, Qilian Mountains uplifted continuously and resulted in the shrink,extinction and being eroded of the basins, and aeolian red clay started to accumulate.  相似文献   

11.
Based on a multi-proxy investigation into the deep core of the Cuoe Lake in the middle of Tibetan Plateau, a 2.8 Ma paleoclimatic and paleoenvironmental evolution is reconstructed. The result of magnetic stratum indicates that the lake basin was formed at about 2.8 MaBP, while the multi-proxy analyses of lithology, grain size, magnetic susceptibility and geochemical elements reveal that there have been three major environmental evolution stages and at least two intensive uplifts of the Tibetan Plateau in the lake basin area, i.e. during 2.8-2.5 MaBP, the lake basin came into being as a result of the disaggregation of the planation surface and rapid rising of the Tibetan Plateau. During 2.5-0.8 MaBP, with gradual uplift of the Tibetan Plateau, the environment of this area was more effectively controlled by the climatic cycle of the alternative glacial-interglacial stages. After 0.8 MaBP, the middle part of the Plateau accelerated its uplift and entered cryoshere.  相似文献   

12.

The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequence known so far (with a basal age of about 8 Ma) and comparison of the results with oxygen isotope curves from North Atlantic marine sediments, 4 stages of the evolution of the Asian winter monsoon were clearly demonstrated. During the first stage, between about 8.1 and 4.3 Ma, there was no relation between Asian winter monsoon and Northern Hemisphere ice volume and high latitude climate inferred from marine sediments. A weak relation developed during the second stage, about 4.3 to 3.5 Ma. During the third stage (3.5 to 2.6 Ma) an Asian winter monsoon system similar to the present formed, initiating a stronger relation between the winter monsoon and Northern Hemisphere ice volume and high latitude climate. In the final stage (2.6 to 0 Ma) the present Asian winter monsoon system was fortified and stabilized and changes in the winter monsoon system were almost in phase with Northern Hemisphere ice volume and climate. The staggered uplift of Tibetan Plateau at ≈8, 3.6, 2.6 Ma and later might be the driving force for the evolution of the Asian winter monsoon.

  相似文献   

13.
利用深部地球物理结果与浅部地质调查结果进行对比,并基于DEM的地貌分析,研究了中更新世以来北天山向北扩展的造山过程.中更新世以来,北天山地壳中存在南倾的低角度滑脱面,滑脱面之上,逆断裂和褶皱带组成的山前活动构造带整体向北滑脱并缩短变形.中更新世早期,气候暖湿,基岩山脉剥蚀强烈,在山前形成了大规模的洪泛平原.中更新世中期以来,持续的构造活动一方面使山前盆地卷入变形,另一方面使盆地遭受分隔,天山北麓地壳以阶梯式的形式自南向北逐步抬升.中更新世中期约600 ka以来,气候越来越干旱,山前盆地地表仅遭受了轻微剥蚀,地壳抬升全部转换为自南向北的地表隆起,隆起的北部向天山靠拢,隆起的南部逐渐成为山系,与天山相连,北天山得以向北扩展.中更新世以来的掀斜隆起造成山麓至盆地高差达1000多米的坡面,为30 ka以来的河流下切提供了坡度条件,造成了深达300多米的河流强烈下切.  相似文献   

14.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

16.
阳澄湖近代沉积物的古湖泊学研究   总被引:6,自引:0,他引:6  
对阳澄湖两上短柱状样进行了地上代以及各种环境指标分析。结果表明,湖底沉积物由被长期沉积间断所分割的3个岩性层组成:下部层C属再沉积的更新世晚硬土层;中部层B为全新世沉积;上部层A为近100年以来的表层沉积。对层A的详细分析显示,本世纪以来,特别是70-80年代以来,金属元素,营养元素和色素的沉积通量明显提高,说明湖泊重金属污染和富营养化程度的不断加重。  相似文献   

17.
Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.  相似文献   

18.
Based on the analysis of temporary-spatial distribution, geomorphic position, contact relationship with underlying strata and grain size of red clay, we studied the formation and environmental background of red clay. During late Miocene-Pliocene, the Ordos Block finished the transformation from the basin to the plateau, which had an obvious environmental effect on the topography, indicated by the formation of highland undergoing wind erosion and lowland receiving red clay deposits. The red clay materials were sourced from dusts carried by wind energy and covered on the initial topography. Unlike Quaternary loess dust covering the overall the Loess Plateau, red clay deposited on the highland would be transported to the lowlands by wind and fluvial process. As a result, there was no continuous "Red Clay Plateau" in the Ordos region and red clay was only preserved in former lowlands. However, red clay was discontinuously distributed through the Loess Plateau and to some extent modified the initial topography. The differential uplift in interior plateau is indicated by the uplift of northern Baiyushan, central Ziwuling and southern Weibeibeishan. The Weibeibeishan Depression formed earlier and became the sedimentary center of red clay resulting in the thicker red clay deposits in Chaona, Lingtai and Xunyi. Since Quaternary the aridity in the northern plateau enhanced and accelerated loess accumulation caused the formation of the Loess Plateau. During the late Pleistocene the rapid uplift led to the enhancement of erosion. Especially after the cut-through of Sanme Lake by the Yellow River, the decline of base level caused the falling of ground water level and at the same time the increase of drainage density resulting in the enhancement of evaporation capacity, which enhanced the aridity tendency of aridity in the Loess Plateau region.  相似文献   

19.
Based on the analysis of temporary-spatial distribution, geomorphic position, contact relationship with underlying strata and grain size of red clay, we studied the formation and environmental background of red clay. During late Miocene-Pliocene, the Ordos Block finished the transformation from the basin to the plateau, which had an obvious environmental effect on the topography, indicated by the formation of highland undergoing wind erosion and lowland receiving red clay deposits. The red clay materials were sourced from dusts carried by wind energy and covered on the initial topography. Unlike Quaternary loess dust covering the overall the Loess Plateau, red clay deposited on the highland would be transported to the lowlands by wind and fluvial process. As a result, there was no continuous “Red Clay Plateau” in the Ordos region and red clay was only preserved in former lowlands. However, red clay was discontinuously distributed through the Loess Plateau and to some extent modified the initial topography. The differential uplift in interior plateau is indicated by the uplift of northern Baiyushan, central Ziwuling and southern Weibeibeishan. The Weibeibeishan Depression formed earlier and became the sedimentary center of red clay resulting in the thicker red clay deposits in Chaona, Lingtai and Xunyi. Since Quaternary the aridity in the northern plateau enhanced and accelerated loess accumulation caused the formation of the Loess Plateau. During the late Pleistocene the rapid uplift led to the enhancement of erosion. Especially after the cut-through of Sanme Lake by the Yellow River, the decline of base level caused the falling of ground water level and at the same time the increase of drainage density resulting in the enhancement of evaporation capacity, which enhanced the aridity tendency of aridity in the Loess Plateau region.  相似文献   

20.
Eolian flux in the Chinese Loess Plateau was reconstructed by measuring the dry bulk density and CaCO3 content of the late Cenozoic loess-paleosol-red clay sequences in the Lingtai profile. Comparison of eolian flux variation between the Lingtai profile and the ODP sites 885/886 in the North Pacific shows a significant wet-dry variability in addition to a gradual drying trend in the dust source regions in interior Asia. Especially, the increase of eolian fluxes from both continental and pelagic eolian sediments indicates a sharp drying of the dust source regions between 3.6 and 2.6 MaBP, which might be attributed to the tectonic uplift of the Tibetan Plateau, which cut down the moisture input to the interior Asia. The average value and variability of eolian flux are higher after 2.6 MaBP than before, which may be related to the Quaternary climatic fluctuations on the glacial-interglacial timescale after the commencement of major Northern Hemisphere Glaciations. The eolian fluxes of the Lingtai profile and Core V21-146 in northwest Pacific show a synchronous variation on the 104-105 a timescale, indicating that the flux variations from both continental and marine records are closely correlated to the Quaternary climatic fluctuation forced by the ice volume changes on a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号