首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

2.
The Wangjiazhuang porphyry–breccia Cu(–Mo) deposit is located in the Zouping volcanic basin, western Shandong Province. Seven molybdenite samples yield a Re–Os weighted mean age of 127.8 ± 0.7 Ma (2σ), which is identical within error to the zircon weighted mean 206Pb/238U age of 128.3 ± 1.3 Ma (2σ) determined for quartz monzonite samples. The host rock is characterized by high concentrations of K2O (4.26–4.53 wt.%), Na2O (4.97–5.76 wt.%), LILEs and LREEs, and high Mg# (> 40), and low concentrations of HFSEs and HREEs, with K2O/Na2O ratios of 0.76–0.88. The quartz monzonite also has high Sr/Y (69.9–112.5) and (La/Yb)N (22.0–30.0) ratios, similar to adakitic rocks worldwide. Relatively low initial 87Sr/86Sr ratios (0.70549–0.70556), high εNd(t) values (2.58–3.06), high radiogenic Pb [(206Pb/204Pb)i = 18.3424–18.4606, (207Pb/204Pb)i = 15.5692–15.5985, (208Pb/204Pb)i = 38.1714–38.2734] and high zircon εHf(t) values (− 2.1 to + 4.3) indicate that the magma was likely derived from the partial melting of subducted oceanic crust which then reacted with the peridotitic mantle wedge. Both the breccia and porphyry ores have a narrow range of δ34S (− 4.8 to + 2.1‰) and Pb isotopic compositions (206Pb/204Pb = 18.295–18.402, 207Pb/204Pb = 15.551–15.573, and 208Pb/204Pb = 38.215–38.331), suggesting that the ore metals were extracted primarily from the quartz monzonite or similar source. Subduction of the Paleo-Pacific slab during the Early Cretaceous resulted in the formation of the Wangjiazhuang quartz monzonite and associated Cu(–Mo) deposit in western Shandong Province.  相似文献   

3.
The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U–Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re–Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu–(Au) porphyry systems, a Late Cretaceous porphyry Cu–Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu–(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.  相似文献   

4.
The Huangshaping polymetallic deposit is located in southeastern Hunan Province, China. It is a world-class W–Mo–Pb–Zn–Cu skarn deposit in the Nanling Range Metallogenic Belt, with estimated reserves of 74.31 Mt of W–Mo ore at 0.28% WO3 and 0.07% Mo, 22.43 Mt of Pb–Zn ore at 3.6% Pb and 8.00% Zn, and 20.35 Mt of Cu ore at 1.12% Cu. The ore district is predominantly underlained by carbonate formations of the Lower Carboniferous period, with stocks of quartz porphyry, granite porphyry, and granophyre. Skarns occurred in contact zones between stocks and their carbonate wall rocks, which are spatially associated with the above-mentioned three types of ores (i.e., W–Mo, Pb–Zn, and Cu ores).Three types of fluid inclusions have been identified in the ores of the Huangshaping deposit: aqueous liquid–vapor inclusions (Type I), daughter-mineral-bearing aqueous inclusions (Type II), and H2O–CO2 inclusions (Type III). Systematic microthermometrical, laser Raman spectroscopic, and salinity analyses indicate that high-temperature and high-salinity immiscible magmatic fluid is responsible for the W–Mo mineralization, whereas low-temperature and low-salinity magmatic-meteoric mixed fluid is responsible for the subsequent Pb–Zn mineralization. Another magmatic fluid derived from deep-rooted magma is responsible for Cu mineralization.Chondrite-normalized rare earth element patterns and trace element features of calcites from W–Mo, Pb–Zn, and Cu ores are different from one another. Calcite from Cu ores is rich in heavy rare earth elements (187.4–190.5 ppm), Na (0.17%–0.19%), Bi (1.96–64.60 ppm), Y (113–135 ppm), and As (9.1–29.7 ppm), whereas calcite from W–Mo and Pb–Zn ores is rich in Mn (> 10.000 ppm) and Sr (178–248 ppm) with higher Sr/Y ratios (53.94–72.94). δ18O values also differ between W–Mo/Pb–Zn ores (δ18O = 8.10‰–8.41‰) and Cu ores (δ18O = 4.34‰–4.96‰), indicating that two sources of fluids were, respectively, involved in the W–Mo, Pb–Zn, and Cu mineralization.Sulfur isotopes from sulfides also reveal that the large variation (4‰–19‰) within the Huangshaping deposit is likely due to a magmatic sulfur source with a contribution of reduced sulfate sulfur host in the Carboniferous limestone/dolomite and more magmatic sulfur involved in the Cu mineralization than that in W–Mo and Pb–Zn mineralization. The lead isotopic data for sulfide (galena: 206Pb/204Pb = 18.48–19.19, 207/204Pb = 15.45–15.91, 208/204Pb = 38.95–39.78; sphalerite: 206Pb/204Pb = 18.54–19.03, 207/204Pb = 15.60–16.28, 208/204Pb = 38.62–40.27; molybdenite: 206Pb/204Pb = 18.45–19.21, 207/204Pb = 15.53–15.95, 208/204Pb = 38.77–39.58 chalcopyrite: 206Pb/204Pb = 18.67–19.38, 207/204Pb = 15.76–19.90, and 208/204Pb = 39.13–39.56) and oxide (scheelite: 206Pb/204Pb = 18.57–19.46, 207/204Pb = 15.71–15.77, 208/204Pb = 38.95–39.13) are different from those of the wall rock limestone (206Pb/204Pb = 18.34–18.60, 207/204Pb = 15.49–15.69, 208/204Pb = 38.57–38.88) and porphyries (206Pb/204Pb = 17.88–18.66, 207/204Pb = 15.59–15.69, 208/204Pb = 38.22–38.83), suggesting Pb206-, U238-, and Th 232-rich material are involved in the mineralization. The Sm–Nd isotopes of scheelite (εNd(t) =  6.1 to − 2.9), garnet (εNd(t) =  6.8 to − 6.1), and calcite (εNd(t) =  6.3) from W–Mo ores as well as calcite (εNd(t) =  5.4 to − 5.3) and scheelite (εNd(t) =  2.9) from the Cu ores demonstrate suggest more mantle-derived materials involved in the Cu mineralization.In the present study we conclude that two sources of ore-forming fluids were involved in production of the Huangshaping W–Mo–Pb–Zn–Cu deposit. One is associated with the granite porphyry magmas responsible for the W–Mo and then Pb–Zn mineralization during which its fluid evolved from magmatic immiscible to a magmatic–meteoritic mixing, and the other is derived from deep-rooted magma, which is related to Cu-related mineralization.  相似文献   

5.
The Yinshan Cu–Au–Pb–Zn–Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb–Zn–Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu–Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite–tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187–303 °C and salinities of 4.2–9.5 wt.% NaCl equivalent in the Pb–Zn–Ag mineralization, and homogenization temperatures of 196–362 °C and salinities of 3.5–9.9 wt.% NaCl equivalent in the Cu–Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu–Au ore bodies, share similar homogenization temperatures of 317–448 °C and contrasting salinities of 0.2–4.2 and 30.9–36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = −1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01–18.07; 207Pb/204Pb = 15.55–15.57; and 208Pb/204Pb = 38.03–38.12) are consistent with those of volcanic–subvolcanic rocks (206Pb/204Pb = 18.03–18.10; 207Pb/204Pb = 15.56–15.57; and 208Pb/204Pb = 38.02–38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8‰ to +10.5‰, δD = −66‰ to −42‰) of inclusion water in quartz imply that ore-forming fluids were mainly derived from magmatic sources. The local boiling process beneath the epithermal Cu–Au ore-forming system indicates the possibility that porphyry-style ore bodies may exist at even deeper zones.  相似文献   

6.
The Wulaga gold deposit, located in Heilongjiang province, NE China, is a subvolcanic rock-hosted, low-sulfidation epithermal gold deposit, and has an Au reserve of about 84 tons. The gold mineralization occurs in a crypto-explosive breccia, and is spatially and temporally associated with an Early Cretaceous granodioritic porphyry. Three individual stages of mineralization have been identified in the Wulaga gold deposit: an early white quartz-euhedral vein stage, a fine-grained pyrite–marcasite–stibnite–chalcedony stage, and a late calcite–pyrite stage. The sulfur isotopic values of sulfide minerals vary in a wide range from − 4 to 4.9‰, but are concentrated in the range of − 3 to 0‰, implying that sulfur in the hydrothermal fluids was derived from magmatic volatiles. Lead isotopic results of the granodioritic porphyry (206Pb/204Pb = 18.341–18.395, 207Pb/204Pb = 15.507–15.523, 208Pb/204Pb = 38.174–38.251) and sulfide minerals (206Pb/204Pb = 18.172–18.378, 207Pb/204Pb = 15.536–15.600, 208Pb/204Pb = 38.172–38.339) are comparatively consistent and clustered together between the orogenic and upper mantle lines, indicating the lead in the ores is closely related to the parent magma of the granodioritic porphyry. The REE patterns of fluid inclusions trapped in sulfides are similar to those of the granodioritic porphyry, which confirms the magmatic origin of the REE in the hydrothermal fluids. The characteristics of S and Pb isotopes and REE suggest that the ore-forming materials of the Wulaga gold deposit are partly magmatic in origin, and related to a high-level hydrous granodioritic magma.  相似文献   

7.
The Huangshaping granites in Hunan Province, South China were investigated for their geochemical characteristics. Three types of granites have been petrographically identified: quartz porphyry, granophyre, and granite porphyry. Whole rock geochemistry suggests that the Huangshaping granites, especially the granite porphyry, exhibit typical A-type granite characteristics with their enrichment in Si, Rb, U, Th, and Nb and significant depletion in Ba, Sr, Ti, Eu, and P. Based on the Al, Y and Zr contents as well as the REE patterns of the rocks investigated, the quartz porphyry and the granophyre are classified as A1 type alkaline granites whereas the granite porphyry is considered as A2 type aluminous granite. Whole rock and quartz/feldspar O isotope data yields a wide range of δ18OSMOW values (11.09–26.32‰). The granites are characterized by high radiogenic Pb isotopic composition. The present-day whole rock Pb isotopic ratios are 206Pb/204Pb = 18.706–19.155, 207Pb/204Pb = 15.616–15.711 and 208Pb/204Pb = 38.734–39.296. Combining the O–Pb isotope compositions with major, trace and REE geochemistry and regional geology characteristics, the Huangshaping granites were determined to resemble within-plate granites that were mainly derived from a felsic infracrustal source related to continental extension. The magma source of the quartz porphyry and the granophyre may have been generated from deeper depths, and then ascended rapidly with limited water content and low oxygen fugacity, which contributed to Cu, Pb and Zn mineralization. On the other hand, the magma that generated the granite porphyry may have ascended relatively slower and experienced pronounced crystal fractionation, upper-crustal basement rock contamination (assimilation) and wall–rock interaction, producing the Sn- and W-rich granite porphyry. This study reveals the crustal extension process and associated magmatic–metallogenic activities during 180–150 Ma in South Hunan.  相似文献   

8.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   

9.
This paper reports new whole-rock geochemical, Sr–Nd–Pb isotopic, and zircon U–Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia–Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~ 130 Ma) and the late Early Cretaceous (~ 116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# [molar 100 × Mg/(Mg + Fe2 +tot)] values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054–0.7095), and low εNd(t) (− 11.90 to − 22.20) and εHf(t) (− 16.7 to − 32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754–542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the Sanmenxia–Houma area suggests that the deeply subducted Yangtze slab influenced an area of ~ 100 km in lateral extent within the southern margin of the central NCC during the Triassic.  相似文献   

10.
The Nanling Range in South China is characterized by extensive Mesozoic magmatism and coeval nonferrous and rare metal mineralization. Huangshaping is a world-class Pb-Zn-W-Mo polymetallic skarn deposit in the central Nanling Range. Magmatic rocks occurring in this ore district include quartz porphyry, granite porphyry, granophyre, dacite porphyry, and aplite, with only the first three granitoids genetically associated with polymetallic mineralization. Most of the orebodies are constrained within the contact zones as skarn and veins between these granitic stocks and the carbonate wall rocks.Since the age of the quartz porphyry is still controversial, and studies of the dacite porphyry and aplite are absent, we focus on these magmatic rocks first. LA-ICP-MS zircon U-Pb dating suggests that the crystallization ages of the quartz porphyry, dacite porphyry, and aplite are 154.3 ± 1.9 Ma, 158.1 ± 0.8 Ma, and 148.4 ± 3.4 Ma, respectively. Combined with previously published age data, we infer the evolutionary sequence of magmatic rocks should be dacite porphyry  quartz porphyry  granite porphyry (granophyre)  aplite. The quartz porphyry, dacite porphyry, and aplite yield high contents of high field strength elements (Zr + Nb + Ce + Y = 255–440 ppm), high ratios of 10,000 × Ga/Al (2.6–3.2), and prominent depletions in Ba, Sr, Eu, P, and Ti, indicating their crustal affinities to A-type granites. They have negative εNd(t) values (−9.4 to −7.0) and high initial Pb isotopic ratios (206Pb/204Pbi = 18.307–18.644, 207Pb/204Pbi = 15.689–15.742, 208Pb/204Pbi = 38.589–38.986), suggesting that they were probably derived by partial melting of ancient granulitic crustal materials.The sulfide minerals exhibit a wide range of δ34SV-CDT values from −22.6 to 24.2‰, with 206Pb/204Pb of 17.669–19.708, 207Pb/204Pb of 15.492–15.714, and 208Pb/204Pb of 37.880–39.789, indicating that sulfur, lead, and other associated metals were derived from a mixture of magmatic components and the Carboniferous wall rocks. Fluid inclusions in pyrrhotite, sphalerite, and marmatite samples have 3He/4He ratios of 0.12 to 1.53 Ra, with calculated mantle helium proportions of 1.3 to 18.9%, indicating a predominantly crustal origin for the ore fluids, with minor inputs from the mantle. The Huangshaping deposit is a typical example of the genetic relationship both spatially and temporally between Jurassic magmatism and polymetallic metallogeny in the Nanling Range.  相似文献   

11.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

12.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

13.
Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in deuterium during the life of the magmatic–hydrothermal system. Alternatively, δD variability may have been caused by a minor amount of mixing with meteoric waters. We propose that the ore-related magma was derived from partial melting of the ancient Mesoproterozoic to Neoproterozoic middle to lower continental crust. This crust was likely metasomatized during earlier subduction, and the crustal magmas may have been contaminated with lithospheric mantle derived magma triggered by MASH (e.g., melting, assimilation, storage, and homogenization) processes during collisional orogeny. In addition, a significant proportion of the metals and sulfur supplied from mafic magma were simultaneously incorporated into the resultant hybrid magmas.  相似文献   

14.
The northeastward subduction of the Neo-Tethyan oceanic lithosphere beneath the Iranian block produced vast volcanic and plutonic rocks that now outcrop in central (Urumieh–Dokhtar magmatic assemblage) and north–northeastern Iran (Alborz Magmatic Belt), with peak magmatism occurring during the Eocene. The Karaj Dam basement sill (KDBS), situated in the Alborz Magmatic Belt, comprises gabbro, monzogabbro, monzodiorite, and monzonite with a shoshonitic affinity. These plutonic rocks are intruded into the Karaj Formation, which comprise pyroclastic rocks dating to the lower–upper Eocene. The geochemical and isotopic signatures of the KDBS rocks indicate that they are cogenetic and evolved through fractional crystallization. They are characterized by an enrichment in LREEs relative to HREEs, with negative Nb–Ta anomalies. Geochemical modeling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of partial melting of a phlogopite–spinel peridotite source to generate the KDBS rocks. Their low ISr = 0.70453–0.70535, ɛNd (37.2 Ma) = 1.54–1.9, and TDM ages ranging from 0.65 to 0.86 Ga are consistent with the melting of a Cadomian enriched lithospheric mantle source, metasomatized by fluids derived from the subducted slab or sediments during magma generation. These interpretations are consistent with high ratios of 206Pb/204Pb = 18.43–18.67, 207Pb/204Pb = 15.59, and 208Pb/204Pb = 38.42–38.71, indicating the involvement of subducted sediments or continental crust. The sill is considered to have been emplaced in an environment of lithospheric extension due to the slab rollback in the lower Eocene. This extension led to localized upwelling of the asthenosphere, providing the heat required for partial melting of the subduction-contaminated subcontinental lithospheric mantle beneath the Alborz magmatic belt. Then, the shoshonitic melt generates the entire spectrum of KDBS rocks through assimilation and fractional crystallization during the ascent of the magma.  相似文献   

15.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   

16.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium.  相似文献   

17.
In situ zircon U–Pb ages and Hf isotopic data, major and trace elements, and Sr–Nd–Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100–93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of −4.1 to −7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = −11.7 to −3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29–0.65) and Zr/Hf (37.5–49.2) but relatively low Ba/Rb (4.4–8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35–70.79 wt.%) and low Nb/Ta (10.0–15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of biotite-dominated assemblages coupled with a lesser amount of crustal contamination, thereby forming the Nanshanping alkaline rocks. The Nanshanping alkaline rocks appear to be associated with an extensional environment in the Cathaysia Block. This extensional regime could have resulted in the slab break-off and rollback of the subducting paleo-Pacific plate and the upwelling of the asthenospheric mantle, which induced partial melting of the enriched lithospheric mantle in the Cretaceous.  相似文献   

18.
In order to constrain better the distribution, age, geochemistry and origin of widespread Cenozoic intraplate volcanism on Zealandia, the New Zealand micro-continent, we report new 40Ar/39Ar and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from offshore (Chatham Rise, Campbell and Challenger Plateaus) and onland (North, South, Auckland, Campbell, Chatham and Antipodes Islands of New Zealand) volcanism on Zealandia. The samples include nephelinite, basanite through phonolite, alkali basalt through trachyte/rhyolite, and minor tholeiite and basaltic andesite, all of which have ocean island basalt (OIB)-type trace element signatures and which range in age from 64.8 to 0.17 Ma. Isotope ratios show a wide range in composition (87Sr/86Sr = 0.7027–0.7050, 143Nd/144Nd = 0.5128–0.5131, 177Hf/176Hf = 0.2829–0.2831, 206Pb/204Pb = 18.62–20.67, 207Pb/204Pb = 15.54–15.72 and 208Pb/204Pb = 38.27–40.34) with samples plotting between mid-ocean-ridge basalts (MORB) and Cretaceous New Zealand intraplate volcanic rocks.Major characteristics of Zealandia's Cenozoic volcanism include longevity, irregular distribution and lack of age progressions in the direction of plate motion, or indeed any systematic temporal or spatial geochemical variations. We believe that these characteristics can be best explained in the context of lithospheric detachment, which causes upwelling and melting of the upper asthenospheric mantle and portions of the removed lithosphere. We propose that a large-scale seismic low-velocity anomaly, that stretches from beneath West Antarctica to Zealandia at a depth of > 600 km may represent a geochemical reservoir that has been in existence since the Cretaceous, and has been supplying the upper mantle beneath Zealandia with HIMU-type plume material throughout the Cenozoic. In addition, the sources of the Cenozoic intraplate volcanism may be at least partially derived through melting of locally detached Zealandia lower lithosphere.  相似文献   

19.
The Xiaguan Ag–Pb–Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250–320 °C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+–Cl-type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280–320 MPa in the early mineralization stage to ca. 90–92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag–Pb–Zn orefield belongs to orogenic-type systems.The δ18OH2O values change from the Early (E)-stage (7.8–10.8 ‰), through Middle (M)-stage (6.0–9.4 ‰) to Late (L)-stage (− 1.5–3.3 ‰), with δD values changing from E-stage − 95 to − 46 ‰, through M-stage − 82 to − 70 ‰ to L-stage − 95 to − 82 ‰. δ13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 ‰ and 0.9 ‰ (average: 0.3 ‰); δ13CCO2 values of L-stage FIs are − 0.2–0.1 ‰ in quartz and − 6.8 ‰ to − 3.5 ‰ in calcite. The H–O–C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution.Sulfur (δ34S = 1.9–8.1 ‰) and lead isotopic compositions (206Pb/204Pb = 18.202–18.446, 207Pb/204Pb = 15.567–15.773 and 208Pb/204Pb = 38.491–39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187  124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag–Pb–Zn orefield was formed in a continent–continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF).  相似文献   

20.
The Anle Zn–Pb deposit, hosted by Upper Cambrian dolostone, is located in the southern Songpan–Ganzi Block in southwest China. In this deposit, ore bodies occur as stratiform lenses and consist of galena, sphalerite and pyrite as ore minerals, and quartz, dolomite and calcite as gangue minerals. The mineralization shows mainly vein, banded and brecciated structures. Four ore bodies have been found in the Anle deposit, with a combined 2.0 million tonnes (Mt) of sulfide ores at average grades of 1.64 wt.% Pb, 6.64 wt.% Zn and 45 g/t Ag. Brown, brownish-yellow and yellow sphalerite samples have δ66Zn values ranging from + 0.08 to + 0.10‰ (average + 0.09‰, n = 3), + 0.12 to + 0.38‰ (average + 0.24‰, n = 8) and + 0.40 to + 0.50‰ (average + 0.46‰, n = 3), respectively. We interpret the progressively heavier Zn isotopes from brown to yellow sphalerite as being led by kinetic Raleigh fractional crystallization. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 4.8 to − 0.2‰ (average − 1.7‰, n = 7) and + 17.9 to + 21.4‰ (average + 19.6‰, n = 7), respectively. Whole-rock δ13CPDB and δ18OSMOW values of the Cambrian ore-hosting dolostone range from + 0.1 to + 1.1‰ (average + 0.6‰, n = 3) and + 23.2 to + 24.1‰ (average + 23.6‰, n = 3), respectively. This suggests that carbon in the ore-forming fluids was provided by the host dolostone through carbonate dissolution. δ34SCDT values of sulfide samples range between − 1.3‰ and + 17.8‰ with an average value of + 6.3‰ (n = 25), lower than evaporites (such as barite + 19.8‰) in the overlaying Lower Ordovician sedimentary strata. The data suggest that sulfur in the hydrothermal fluids were derived from evaporites by thermo-chemical sulfate reduction (TSR). 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfide minerals range from 17.63 to 17.86, 15.58 to 15.69 and 37.62 to 37.95, respectively. The data are similar to those of the age-corrected Cambrian ore-hosting dolostone (206Pb/204Pb = 17.70–17.98, 207Pb/204Pb = 15.58–15.65 and 208Pb/204Pb = 37.67–38.06), but lower than those of age-corrected Ordovician sandstone and slate (206Pb/204Pb = 18.54–19.58, 207Pb/204Pb = 15.73–15.81 and 208Pb/204Pb = 38.44–39.60). This indicates that ore Pb was most likely to be derived from the Cambrian ore-hosting dolostone. Therefore, our new geological and isotopic evidence suggests that the Anle Zn–Pb deposit is best classified to be an epigenetic carbonate-hosted Mississippi Valley-type (MVT) deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号