首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planktonic foraminifer distributions in seventeen stratigraphic sections of Upper Cretaceous hemipelagic and pelagic sequences of northern Bey Da?lar? Autochthon (western Taurides) yield six biozones such as, Dicarinella concavata Interval Zone, Dicarinella asymetrica Range Zone, Radotruncana calcarata Range Zone, Globotruncana falsostuarti Partial Range Zone, Gansserina gansseri Interval Zone, and Abathomphalus mayaroensis Concurrent Range Zone. Two of the zones, Dicarinella concavata Zone and Dicarinella asymetrica Zone, are identified in the massive hemipelagic limestones of the Bey Da?lar? Formation, of Coniacian-Santonian age. They are characterized by scarce planktonic foraminifera and abundant calcisphaerulids. The other four biozones are determined from the cherty pelagic limestones of the Akda? Formation and indicate a late Campanian-late Maastrichtian time interval. The planktonic foraminifera observed in these four biozones are diverse, complex morphotypes (K-selection), suggesting open oceans. The assemblage of the Abathomphalus mayaroensis Zone shows that the latest Maastrichtian record is absent throughout the northern part of the autochthon. Two main sedimentary hiatuses are recognized within the Upper Cretaceous pelagic sequence. Early to middle Campanian and latest Maastrichtian-middle Paleocene planktonic foraminifera are absent in all measured stratigraphic sections. Hiatus durations differ between sections as a result of diachronism of onset of the hemipelagic and pelagic deposition and the post-Santonian and post-Maastrichtian erosional phases. Drowning event and the early-middle Campanian and latest Maastrichtian-middle Paleocene hiatuses in the pelagic sequence are attributed to regional tectonics during the Late Cretaceous.  相似文献   

2.
《Cretaceous Research》1995,16(5):539-558
The Cretaceous sedimentary successions of the Ionian Zone, Hellenides, western Greece, are composed of pelagic limestones intercalated with cherty layers. The micritic and biomicritic beds with abundant chert nodules and cherty horizons, which were deposited during late Tithonian to early Santonian times, belong to the Vigla Limestone Formation, while the sediments deposited during the late Santonian to Maastrichtian, formed clastic limestone beds in which chert nodules also occur sparsely.In the Cretaceous beds calpionellids, planktonic and benthonic foraminifera characteristics of the Tethyan realm, and radiolaria have been recorded. The calpionellids, together with radiolaria, colonized the entire basin during the Berriasian to early Valanginian, the latter becoming dominant during the Hauterivian to early Albian as a result of anoxia. Planktonic foraminifera first appeared in the basin during the late Albian and persisted until the Maastrichtian. The numbers decreased, however, during the Cenomanian-early Turonian interval, when radiolaria increased owing to anoxic conditions, and during the Campanian-Maastrichtian interval because the basin became shallow. During this interval larger benthonic foraminifera colonized the basin. Zonal markers have been recognized in calpionellid and planktonic foraminiferal assemblages on the basis of which two calpionellid zones are distinguished, viz. the Calpionella alpina and Calpionellopsis Zones (Berriasian-early Valanginian) along with seven planktonic foraminiferal zones, viz. the Rotalipora ticinensis, Rotalipora appenninica (late Albian), Rotalipora brotzeni (early Cenomanian), Helvetoglobotruncana helvetica (early to middle Turonian), Marginotruncana sigali(late Turonian to early Coniacian), Dicarinella concavata (late Coniacian to early Santonian) and Dicarinella asymetrica (late early-late Santonian) Zones.The anoxic conditions that prevailed in the Ionian basin during the Barremian-early Albian, Cenomanian-early Turonian and Coniacian-Santonian intervals probably arose as a result of (a) the accumulation of large amounts of organic matter because the palaeotopography of the basin periodically hindered the circulation of water from the ocean and (b) the oxygen content of the intruding oceanic waters was low.  相似文献   

3.
Abstract: A rich assemblage of planktonic foraminifera has been studied from an outcrop of the Gurpi Formation, the hydrocarbon source rock in the southwest Iran, Deh Dasht area (Kuh-e Siah anticline). Based on the distribution of the planktonic foraminifera, eight biozones have been recognized that included: Dicarinella concavata Interval Zone (Earliest Santonian), Dicarinella asymetrica Total Range Zone (Santonian to Earliest Campanian), Globotruncanita elevata Partial Range Zone (Early Campanian), Globotruncana ventricosa Interval Zone (Middle to Late Campanian), Radotruncana calcarata Total Range Zone (Late Campanian), Globotruncanella havanensis Partial Range Zone (Late Campanian), Globotruncana aegyptiaca Interval Zone (Late to latest Campanian), Gansserina gansseri Interval Zone (Latest Campanian to Early Maastrichtian). These biozones indicates that the Gurpi Formation deposited during the Early Santonian- Early Maastrichtian. These biozones are compared to the most standard biozones defined in Tethysian domain. Based on distribution of morphotype groups of planktonic foraminifera, planktonic to benthic ratio (P/B) and content of carbonate, nine third-order sequences are recognized.  相似文献   

4.
西藏南部晚白垩世-古新世大洋红层的分布与时代   总被引:11,自引:2,他引:9  
特提斯—喜马拉雅北沉积亚带沉积有一套大洋红色岩层,由东往西在羊卓雍错、江孜、萨迦、萨嘎、札达一带断续出露,并与宗卓组上部地层相关。这套海相红层,根据岩性特征和浮游有孔虫可以直接进行区域对比。其时代在江孜地区为Santonian晚期—Campanian中期,包括Dicarinella asymetrica, Globotruncanitaelevata,Globotruncana ventricosa 和Globotruncanita calcarata 浮游有孔虫带;在萨迦地区限于Campanian期,鉴定有Globotruncanita elevata, Globotruncana ventricosa 和G. linneiana等具时代意义的浮游有孔虫;在萨嘎—吉隆地区为Maastrichtian期,识别出Gansserina gansseri 和Abthomphalus mayaroensis 浮游有孔虫带;在札达地区为古新世早期,以Glibigerina eugubina G. fringa化石带为代表。海相红层在西藏南部由东往西其时代逐渐变新,主要沉积时代分布在Santonian晚期—古新世早期。其总体时间跨度较大,大约长达20Ma。而事件在各个地点的延续时间有限,基本在3~8 Ma之内。根据对海相红层和沉积基质中浮游有孔虫的研究,该沉积带宗卓组的顶界时代已超出白垩纪,进入了古新世。  相似文献   

5.
At Montagna della Maiella and at Gola del Furlo (central Apennines) two discrete layers of bentonic clay are intercalated within the pelagic (Furlo) and turbiditic/pelagic limestones (Maiella) of the Upper Cretaceous basinal succession of the Umbrian basin (Scaglia facies). The bentonite layers are dated by planktonic foraminifera to the Globotruncanita elevata zone, early Campanian, and by calcareous nannofossils to the Aspidolithus parcus zone (CC 18); they fall into the reversed interval of chron 33. Detailed correlation shows the layers to be of exactly the same age. The upper layer is dated by U/Pb on magmatic zircons to 81.67±0.21 Ma, an age compatible with the Cretaceous time-scale of Obradovich. The mineralogy of the bentonitic clays is almost pure montmorillonite and contrasts sharply with the clay mineral assemblage of the enclosing pelagic and turbiditic limestones, which is dominated by soil-derived smectite and illite in different proportions. The bentonite seams are interpreted as the submarine alteration products of wind-borne volcanic ashes. They can be followed with only minor changes in thickness over 200 km and must be derived from distant volcanic sources and related to extreme volcanic events. A possible source area is present in the Dinarides where Upper Cretaceous subduction-related magmatic rocks are widespread.  相似文献   

6.
The earliest marine sediments of eastern Corsica, linked to the birth of the Corsica Basin, are represented by granitic breccia of the Saint-Antoine Formation and pelagic marls of the Alzelle Formation. They are dated as Mid-Burdigalian by nannoplankton and planktonic foraminifera (relative age and grade datings between 18.7 and 18.3 Ma). The Aghione Formation (Latest Burdigalian–Langhian) lies upon the Alzelle Formation. A component of the major East-Corsican faults, the Saint-Antoine Fault, underwent extensional activity during the Burdigalian and until the Late Miocene, when occurred the uplift of the Castagniccia antiform. To cite this article: M.-D. Loÿe-Pilot et al., C. R. Geoscience 336 (2004).  相似文献   

7.
Here, we report that a lithostratigraphic unit that outcrops at Sararu village, 6 km northeast of Qumri village that had previously been assigned to the Baluti Formation is not Triassic in age and therefore can not be a correlative equivalent of the Baluti Formation. The outcropping unit at Sararu comprises intercalation of calcareous mudstones and limestones, and is indeed lithologically similar to the Baluti Formation (Late Triassic). The Baluti Formation (also known as the Baluti Shale) is known from a typical section found at the Gara Anticline and from many deep drilled oil exploration wells. It is generally composed of alternations of the shales, limestones, dolomites, and dolomitic limestones. It is underlain by the Kurra Chine Formation (Upper Triassic) and overlain by the Sarki Formation (Lower Jurassic). In this study, detailed field observations, an assessment of stratigraphic successions, studies of microfossils such as age-specific planktonic foraminifera (e.g., Globotruncana bulloides), and age-specific biomarkers (oleanane index and C28/C29 regular sterane index) reveal that the lithostratigraphic unit at Sararu village can not be a correlative equivalent of the Baluti Formation, and it is more likely from the Upper Cretaceous. There are a number of Upper Cretaceous formations found in this part of Kurdistan, but based on fossil-type and palaeoenvironmental associations, the Hadiena Formation, from the Upper Cretaceous, is considered as the most likely correlative equivalent to the calcareous mudstone and limestone succession found at Sararu village.  相似文献   

8.
Upper Cretaceous pelagic deposits outcropping in the Maçka (Trabzon) region include radiolarians and pelagic foraminifera. The Çatak Group represented by the volcano-sedimentary successions consists of three formations having different properties. Two sections, ÇTK1 and ÇTK2, are selected from the Çe meler and Elmalι Dere formations, respectively, establishing the biostratigraphy of outcropping sedimentary units. A total of 17 species of Whiteinella, Helvetoglobotruncana, Marginotruncana, Dicarinella, Praeglobotruncana, Archaeoglobigerina and Hedbergella demonstrating the early Turonian–Coniacian are established in the ÇTK1 stratigraphic section. The early Turonian radiolarian fauna consisting of Halesium sexangulum Pessagno, 1971, Crucella cachensis Pessagno, 1971, Stichomitra communis Squinabol, 1903 is also defined in the same section. A total of 30 species of Crucella, Halesium, Pessagnobrachia, Patulibracchium, Alievium, Archaeospongoprunum, Dicyomitra, Stichomitra, Diacanthocapsa, Dactiyliodiscus, Amphipydax, Pseudoaulophocus, Acaeniotyle, Archaeodictyomitra, Actinomma, Xitus, Neosciadocapsidae characterizing the early and late Turonian, as well as the Coniacian–early Santonian are recognized from red-coloured pelagic limestones of the ÇTK2 section. Also, planktonic foraminifera species of Marginotruncana, Hedbergella, Heterohelix, Globotruncana, Globotruncanita, Archaeoglobigerina, Dicarinella characterizing the Coniacian–Santonian are described in the thin sections of the same samples. The age of red-coloured limestones is identified as the Coniacian–Santonian benefit from radiolarians and pelagic foraminifera. Consequently, radiolarians and pelagic foraminifera within sedimentary successions of the investigation area are distributed in two intervals that coincide with the early Turonian–Coniacian and Coniacian–Santonian intervals.  相似文献   

9.
The Chikkim Formation as exposed in the Tethyan Himalaya (India) has been studied at its type locality, using planktonic foraminifera for a detailed biostratigraphic elaboration. Divided into two members, the Lower and Upper Chikkim members, this formation ranges in age from Albian to early Maastrichtian(?), and reaches a maximum thickness of 150 m. Examination of thin sections has yielded 34 species of foraminifera in five genus-level assemblages. The Lower Chikkim Member is about 55 m thick; its basal portion is of Albian age based on the presence of Biticinella breggiensis and Planomalina buxtorfi. At 26 m above the base, Whiteinella archaeocretacaea documents OAE 2 (Oceanic Anoxic Event 2), and thus the Cenomanian/Turonian boundary in this section. The carbonate sequence is capped by a Santonian-age hardground with iron oxide crusts and bioturbation. Macrofossils, including belemnites (at the base) and irregular echinoids (upper part), are present. The basal carbonaceous marls of the Upper Chikkim Member yield both large (benthic) rotaliid as well as planktonic foraminifera (Globotruncanita elevata, Gl. stuartiformis, Gl. stuarti, Gansserina gansseri and others), indicating a Campanian age. The co-occurrence of Gl. elevata and G. gansseri in a single thin section results either from condensation or reworking in the basal part of the Upper Chikkim Member. Late Cretaceous index foraminifera such as Gl. elevata document deposition within the Tethyan Realm. The original thickness of the Upper Chikkim Member is uncertain, but would have been around 100 m; the unit appears markedly reduced through weathering at a height of about 5000 m above sea level. Equivalent sediments are exposed in the Zanskar area to the northwest, and in Nepal and Tibet. Cretaceous Oceanic Red Beds (CORBs) are probably missing due to the proximality of these pelagic settings.  相似文献   

10.
Lower to Middle Miocene successions in three offshore wells named GS 160-2, QQ-89, and Ras Elush-2 located in the central and southern parts of the Gulf of Suez were examined for their planktonic foraminifera, calcareous nannofossil assemblages, and paleoenvironments. These successions are subdivided from older to younger into Aquitanian Nukhul, Burdigalian-Langhian Rudeis, Langhian Kareem, and Serravallian Belayim formations. The identified foraminifera includes 54 benthic species belonging to 25 genera and 47 planktonic species belonging to 11 genera, in addition to 64 calcareous nannofossil species belonging to 21 genera. The stratigraphic distribution of these assemblages suggests classifying the studied successions into seven planktonic foraminiferal and six calcareous nannoplankton biozones. The planktonic foraminiferal and calcareous nannoplankton biozones are integrated. Different environments ranging from shallow inner to outer shelf are recognized. This is based on quantitative analyses of foraminifera including benthic biofacies, planktonic/benthonic ratio, and diversity. Syn-rift tectonics played an important role in configuration of the Miocene depositional history in the Gulf of Suez region.  相似文献   

11.
In the Guaniguanico Mountains of western Cuba, the Late Jurassic–Early Cretaceous limestones occur in three stratigraphic successions, which have accumulated along the proto-Caribbean margin of North America. The Late Jurassic subsidence and shallow-water carbonate deposition of the Guaniguanico successions have no counterpart on the northeastern Maya block, but some distant similarities with the southeastern Gulf of Mexico may exist. Four facies types have been distinguished in the Tithonian–Lower Valanginian deposits of the Guaniguanico tectonic units. Drowning of the Late Jurassic carbonate bank of the Sierra de los Organos occurred at the Kimmeridgian/Tithonian boundary. During this boundary interval, sedimentation in the west Cuban area and southwestern margin of the Maya block (Mexico) has evolved in a similar way in response to a major second-order transgression.The Lower Tithonian ammonite assemblages of the Guaniguanico successions indicate, in general, the neritic zone. Presence of juvenile gastropods and lack of adult specimens suggest unfavorable environment for these molluscs, probably related to low oxygenation levels. The Early Tithonian transgressive phase terminated about the lower boundary of the Chitinoidella Zone. The Late Tithonian “regressive” phase is weakly marked, whereas the latest Tithonian–earliest Berriasian strata were deposited during a deepening phase. The latter transgressive phase has ended in the Late Berriasian Oblonga Subzone. We correlate the bioturbated pelagic biomicrites of the Tumbitas Member of the Guasasa Formation with a significant fall of the sea level during the latest Berriasian–Early Valanginian. The average sedimentation rate for the Tumbitas Member biomicrites was about three times faster than for the Berriasian Tumbadero Member limestones. Sedimentation rates for the Tumbitas Member and the Valanginian limestones at the DSDP Site 535 in the southeastern Gulf of Mexico were similar. In the Los Organos succession, the Late Valanginian transgressive interval is associated with radiolarian limestones and black chert interbeds in the lower part of the Pons Formation. In the Southern Rosario succession, the pelagic limestones pass into the radiolarian cherts of the Santa Teresa Formation indicating a proximity of CCD during Late Valanginian–Hauterivian times.  相似文献   

12.
《Cretaceous Research》1988,9(4):321-336
The type section of the marly Daliyya Formation in Daliyat el Karmil, northern Israel, has been examined for planktonic foraminifera and ostracods. The coexisting assemblages of the upper part of the Helvetoglobotruncana helvetica total range zone (= Marginotruncana sigali interval zone) and of the Cythereis rawashensis kenaanensis assemblage zone indicate that this succession is middle Turonian in age. The depth of deposition varied from neritic (100–200 m) to shallow (≈50 m) with a short littoral episode. The palaeobathymetric oscillations agree rather well with global sea-level changes. Included in this paper are taxonomic remarks on some of the foraminifera and ostracods.  相似文献   

13.
The stratigraphy of the uppermost levels of the Menderes Massif is controversial and within its details lie vital constraints to the tectonic evolution of south-western Turkey. Our primary study was carried out in four reference areas along the southern and eastern Menderes Massif. These areas lie in the upper part of the Menderes metamorphic cover and have a clear stratigraphic relationship and contain datable fossils. The first one, in the Akbük-Milas area, is located south-east of Bafa Lake where the Milas, then KLzLla<aç and KazLklL formations are well exposed. There, the Milas formation grades upwards into the KLzLla<aç formation. The contact between the KLzLla<aç and the overlying KazLklL formation is not clearly seen but is interpreted as an unconformity. The Milas and KLzLla<aç formations are also found north of Mu<la, in the region of Yata<an and KavaklLdere. In these areas, the Milas formation consists of schists and conformably overlying platform-type, emery and rudist-bearing marbles. Rudists form the main palaeontological data from which a Santonian-Campanian age is indicated. The KLzLla<aç formation is characterized by reddish-greyish pelagic marbles with marly-pelitic interlayers and coarsening up debris flow deposits. Pelagic marbles within the formation contain planktonic foraminifera and nanoplankton of late Campanian to late Maastrichtian age. The KazLklL formation is of flysch type and includes carbonate blocks. Planktonic foraminifera of Middle Palaeocene age are present in carbonate lenses within the formation. In the Serinhisar-Tavas area, Mesozoic platform-type marbles (YLlanlL formation) belonging to the cover series of the Menderes Massif exhibit an imbricated internal structure. Two rudist levels can be distinguished in the uppermost part of the formation: the first indicates a middle-late Cenomanian age and the upper one is Santonian to Campanian in age. These marbles are unconformably covered by the Palaeocene-Early Eocene Zeybekölentepe formation with polygenetic breccias. In the Çal-Denizli area, the Menderes massif succession consists of cherty marbles and clastic rocks with metavolcanic lenses. The Lower-Middle Eocene zalvan formation lies unconformably on this sequence and is interpreted as equivalent to the marble horizons at Serinhisar but with pelagic facies. The zalvan formation consists of shale, mafic volcanic rock, lenses of limestone and blocks of recrystallized limestone. The zalvan formation is dated here for the first time by Early-Middle Eocene foraminifera and nanoplankton from the matrix of the formation. An angular unconformity exists between the Upper Cretaceous and Lower Tertiary sequences, suggesting that a phase of deformation affected the southern and eastern part of the Menderes Massif at this time. This deformation may be caused by initial obduction of the Lycian ophiolite onto the passive margin to the north of the Menderes carbonate platform during the latest Cretaceous. Drowning of the platform led to termination of carbonate deposition and deposition of deep water flysch-like clastic sediments.  相似文献   

14.
The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K–P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian–Maastrichtian); Dakhla Formation (Danian–Selandian); Tarawan Formation (Selandian–Thanetian) and Esna Formation (Thanetian–Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian–Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene–Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.  相似文献   

15.
Two cored boreholes in the central part of the North West German Basin recovered a unique section of Upper Barremian to Lower Aptian strata. Calcareous nannofossils show a distinctive shift from boreal endemic assemblages in the Barremian to cosmopolitan ones in the Aptian. This onset of new cosmopolitan species (e.g., Chiastozygus litterarius, Flabellites oblongus, Rhagodiscus angustus, Braarudosphaera sp., Eprolithus sp.) is spread over an interval of 25m, starting well below the early Aptian "Fischschiefer", a dark laminated shale rich in organic matter. These changes in the composition of calcareous nannofossils indicate that major palaeoceanographic changes occurred before the deposition of the Fischschiefer.The distribution pattern of calcispheres allows the differentiation of two sedimentary successions, separated by the Fischschiefer. The lower succession, which includes the sediments below the base of the Fischschiefer, indicates a boreal-pelagic environment. The lower part of the upper successions which includes the Fischschiefer, represents warmer inner shelf conditions. This corresponds to the presence of rich Tethyan-derived nannoconid assemblages and the presence of the planktonic foraminifera Hedbergella in the Fischschiefer. The topmost part of the upper succession (middle Aptian, Hedbergella marl) suggests a change to a pelagic warmer water environment. Two new taxa are introduced: the calcareous dinoflagellate cyst Obliquipithonella laqueata n. sp. and the foraminiferan Choanaella fortunate n. gen. n. sp.  相似文献   

16.
The stratigraphic and palaeoenvironmental implications of a section in the Upper Senonian to Lower Eocene carbonates of the Tripolitza Platform in central Crete are discussed in this paper. The lower part (upper Campanian–lower Maastrichtian) of the succession consists of about 75 m of thickly bedded, light to dark grey limestones, dolomitic limestones and dolomites that were deposited on an inner carbonate platform. It is characterized by stratified bioclastic rudist facies (shelly limestone) associated with foraminifera and especially with species of the Rhapydioninidae family. These are overlain by 35 m of crystalline light grey dolomites that were deposited on a very restricted internal platform, characterized by intertidal-supratidal facies. The overlying 75-m-thick light grey dolomitic limestones and dolomites are characterized by the presence ofRhapydionina liburnicaStache, and in the uppermost part byNeobalkhania bignotiCherchi, Radoicic & Schroeder, dating it as Late Maastrichtian. The facies, cryptalgal laminites with fenestrae of varying dimensions, suggest relatively extensive subaerial exposure. Possible pedogenic textures are common in this sequence and especially in the uppermost part, which coincides with the K/T boundary. The presence ofPseudonummoloculina heimi(Bonet) at two levels in the Maastrichtian succession suggests transportation of Middle-Late Cenomanian sediments from emergent blocks of the platform during this period. A gap is suspected, for regional stratigraphic reasons, between this horizon and the next which containsSpirolinasp. and “Pseudochrysalidina” sp., dating it as Early-Middle Eocene.  相似文献   

17.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

18.
Abstract

Biostratigraphical data using larger foraminifera and planktonic foraminifera permitted us to establish the correlation between shallow platform sediments rich in larger foraminifera (Montsec and Serres Marginals thrust sheets) and deeper ones containing planktonic foraminifera (Boixols thrust sheet).

Consequently, the Santa Fe limestones containing Ovalveolina-Praealveolinaassemblage represent the Cenomanian. Early Turonian ( ‘IT~ archaeocretacea and P. helvetica zones) exist in both, Montsec and Boixols thrust sheets and it is constituted by Pithonella limestones. Late Turonian (M. schneegansi zone) is only present in Boixols thrust sheet (Reguard Fm.), the Montsec thrust sheet having an erosive hiatus.

Late Coniacian-Early Santonian (D. Concavata zone) is represented in the Montsec thrust sheet (Cova Limestones) and in the eastern part of the Boixols thrust sheet (St. Corneli Fm.) by two differents facies giving two different microfaunal assemblages; the firts one, characterized by Ophtalmidiidae s.l indicate a restricted lagoonal environment while the second one, characterized by diverses species of complex agglutinated, Fabulariidae, Meandropsinidae and Rotaliidae, represents an open shallow platform. In the Boixols thrust sheet (Anseroles Fm.) dominate the planktonic foraminifera and small benthic.

In the late Santonian (D. asyrnetrica zone) the sea reached as far as Serres Marginales thrust sheet where sediments (Tragó de Noguera unit) are terrigenous and deposited in a very shallow platform. In the Montsec thrust sheet (Montsec marls) the larger foraminifera indicate a platform deeper than that of the Serres Marginals thrust sheet. In the Boixols thrust sheet the sediments are deposited in an outer platform (Herbasavina Fm.) or turbiditic basin (Mascarell Mb.).

During Campanian times the transgresion reaches the maximum. In the Serres Marginals sediments are deposited in a restricted shallow environment rich in Meandropsinidae (Serres Limestones). In the Montsec thrust sheet they are deposited in a platform with patch reefs and shoals (Terradets limestones) and in the Boixols one in an outer platform, talus and/or basin.

During Early Maastrichtian times (C. falsostuarti zone) terrigenous materials arrived in the basin, the rate of sedimentation increased outstripping the subsidence rate and the retreat of the sea to the north. Late Maastrichtian (C. gansseri zone) is only present in the Boixols thrust sheet.  相似文献   

19.
A second possible species of the genus Clypeorbis Douvillé [type-species C. mammillata (Schlumberger)] is described from the topmost Maastrichtian of the Kambühel Formation of the Northern Calcareous Alps, Austria. This comparatively small-sized, asymmetric calcareous benthic foraminifer is characterized by its rather large biloculine embryonic apparatus and a reduced ventral umbo. It occurs in a mixed calcilithic–bioclastic littoral facies together with orbitoids, rotaliids, Siderolites, and other mainly calcareous benthic foraminifera as well as red algae. The stratigraphy is constrained by means of associated planktonic foraminifera, indicating the latest Maastrichtian age (CF-3 hariaensis zone). Clypeorbis? ultima n. sp. might represent the youngest representative of the Clypeorbinae Sigal that became extinct at the Cretaceous–Paleogene boundary.  相似文献   

20.
The Lechówka section comprises the most complete Cretaceous–Paleogene (K-Pg) boundary succession in Poland and is among 29 sites worldwide with the youngest ammonite record. Here, cephalopods (ammonites and nautilids), organic-walled dinoflagellates (dinocysts) and foraminifera from the uppermost Maastrichtian interval are studied. In terms of ammonite biostratigraphy, the upper Maastrichtian Hoploscaphites constrictus crassus Zone is documented up to a level 120 cm below the K-Pg boundary. There is no direct, ammonite-based evidence of the highest Maastrichtian H. constrictus johnjagti Zone. However, the predominance of the dinocyst marker taxon Palynodinium grallator suggests the presence of the equivalent of the uppermost Maastrichtian Thalassiphora pelagica Subzone, which is correlatable with the H. c. johnjagti ammonite Zone. The planktonic foraminiferal assemblage is coeval with that from the H. c. johnjagti Zone as well. These data indicate that the top of the Maastrichtian at Lechówka is complete within the limits of biostratigraphic resolution, albeit slightly condensed. The dinocyst and foraminiferal assemblages are dominated by taxa that are characteristic of high-energy, marginal marine environments. A reduction in test size among the calcareous epifaunal benthic foraminifera is observed at a level 50 cm below the K-Pg boundary, which is possibly related to environmental stress associated with Deccan volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号