首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
The Yidun Arc was formed in response to the westward subduction of Garze–Litang Ocean (a branch of Paleotethys) in the Late Triassic, where abundant porphyry Cu–Mo deposits (221–213 Ma) developed along the regional NW–SE sinistral faults and emplaced in the southern portion of the arc. The ore-related porphyries are mostly metaluminous or slightly peraluminous, belonging to shoshonitic high-potassium calc-alkaline I-type granites, with εHf(t) values of −6.64 to +4.12. The ore-bearing magmas were probably derived from the partial melting of subduction-metasomatic-enriched mantle, with the contamination of underplated mafic materials. The Late Cretaceous (88–80 Ma) highly fractionated I-type granite belt and related porphyry Cu–Mo deposits and magmatic-hydrothermal Cu–Mo–W deposits occur along approximately N–S-trending faults in the Yidun Arc. This belt extended across the Yidun Arc and Garze–Litang suture zone to the north and across the Yangtze Craton to the south, intruding the Late Triassic porphyry belt. The ore-related porphyries are characterized by high silica and high total alkalis, with enrichment in large ion lithophile elements (LILEs; Rb, U and K) and depletion in high field strength elements (HFSE; Nb, Ta, P and Ti) and Ba. They have lower εHf(t) values varying from −9.55 to −2.75, and significant negative Eu anomalies, indicating that the ore-bearing porphyritic magmas originated from ancient middle-upper crust. Two-stage magmatism and mineralization were superimposed in the Xiangcheng-Shangri-La district. Some ore deposits comprise two episodes of magmatism and associated mineralization such as both 207 ± 3.0 Ma granodiorite and 82.1 ± 1.2 Ma monzogranite intruded in the Xiuwacu deposit, causing Cu–Mo–W polymetallic mineralization. To date, 11 Late Triassic porphyry Cu deposits (e.g. the Pulang giant deposit with 5.1 Mt Cu), and five Late Cretaceous porphyry Cu–Mo (W) deposits (e.g. Tongchanggou Mo deposit with 0.59 Mt Mo) have been evaluated in the Xiangcheng-Shangri-La district. The continuity and inheritance of multiphase magmatism and the new understanding of superimposed mineralization will help to guide future exploration.  相似文献   

2.
《Comptes Rendus Geoscience》2014,346(7-8):190-199
Melt inclusions (MIs) in quartz from granitoids in the northern Qinling belt were studied using microthermometry and laser Raman spectroscopy. The total homogenization of melt inclusions occurs in a mean range between 1050 and 1100 °C. Laser Raman experiments reveal H2O, C2H6, C4H6 and CH4 as the dominant volatile compounds. Our results provide insights into the temperatures of magma crystallization and the dominantly reducing environment during the early magmatic stage. Based on ore mineralogy, and on the volatile species content in the MIs, we evidence firstly that the Qiushuwan porphyry Cu–Mo deposit in the Qinling–Dabie–Sulu orogenic belt was derived from a reduced magmatic system, emplaced at relatively deep domains more than 10 km deep, and secondly, that the magmas that are responsible for the generation of Qiushuwan were either derived from an inherently reduced source, or reduced during ascent and emplacement. The mechanism might have involved the assimilation of sedimentary material with minimal crustal interaction. The parental magmas likely underwent reduction essentially by loss of all of their SO2 by degassing, as evidenced by the low S content in melt inclusions. These reduced materials provided adequate sulfur source for the formation of the porphyry Cu–Mo deposits with obvious zonation, which plays a key role in the mineralization; finally, we conclude that the reduced environment and the relatively deep domain of magma emplacement probably limited the extent of mineralization, generating only a relatively small Cu–Mo deposit in Qiushuwan, located within the northern Qinling accretionary belt.  相似文献   

3.
Porphyry and skarn Cu–Fe–Au–Mo deposits are widespread in the Middle and Lower Yangtze River metallogenic belt (MLYMB), eastern China. The Matou deposit has long been regarded as a typical Cu–Mo porphyry deposit within Lower Yangtze part of the belt. Recently, we identified scheelite and wolframite in quartz veins in the Matou deposit, which is uncommon in other porphyry and skarn deposits in the MLYMB. We carried out detailed zircon U–Pb dating and geochemical and Sr–Nd–Hf isotopic studies of the granodiorite porphyry at Matou to define any differences from other ore-related granitoids. The porphyry shows a SiO2 content ranging from 61.85 wt.% to 65.74 wt.%, K2O from 1.99 wt.% to 3.74 wt.%, and MgO from 1.74 wt.% to 2.19 wt.% (Mg# value ranging from 45 to 55). It is enriched in light rare earth elements and large ion lithophile elements, but relatively depleted in Nb, Ta, Y, Yb and compatible trace elements (such as Cr, Ni, and V), with slight negative Eu anomalies (Eu/Eu* = 0.88–0.98) and almost no negative Sr anomalies. Results of electron microprobe analysis of rock-forming silicate minerals indicate that the Matou porphyry has been altered by an oxidized fluid that is rich in Mg, Cl, and K. The samples show relatively low εNd(t) values from −7.4 to −7.1, slightly high initial 87Sr/86Sr values from 0.708223 to 0.709088, and low εHf(t) values of zircon from −9.0 to −6.5, when compared with the other Cu–Mo porphyry deposits in the MLYMB. Zircon U–Pb dating suggests the Matou granodiorite porphyry was emplaced at 139.5 ± 1.5 Ma (MSWD = 1.8, n = 15), which is within the age range of the other porphyries in the MLYMB. Although geochemical characteristics of the Matou and other porphyries in the MLYMB are similar and all adakitic, the detrital zircons in the samples from Matou suggest that Archean lower crust (2543 ± 29 Ma, MSWD = 0.25, n = 5) was involved with the generation of Matou magma, which is different from the other porphyries in the belt. Our study suggests that the Matou granodiorite porphyry originated from partial melting of thickened lower crust that was delaminated into the mantle, similar to the other porphyries in the MLYMB, but it has a higher proportion of lower crustal material, including Archean rocks, which contributed to the formation of the porphyry and related W-rich magmatic-hydrothermal system.  相似文献   

4.
East Qinling is the largest porphyry molybdenum province in the world; these Mo deposits have been well documented. In West Qinling, however, few Mo deposits have been discovered although granitic rocks are widespread. Recently, the Wenquan porphyry Mo deposit has been discovered in Gansu province, which provides an insight into Mo mineralization in West Qinling. In this paper we report Pb isotope compositions for K-feldspar and sulfides, S isotope ratios for sulfides, the results obtained from petrochemical study and from in situ LA-ICP-MS zircon U-Pb dating and Hf isotopes. The granitoids are enriched in LILE and LREE, with REE and trace element patterns similar to continental crust, suggesting a crustal origin. The Mg# (40.05 to 56.34) and Cr and Ni contents are high, indicating a source of refractory mafic lower crust. The εHf(t) values of zircon grains from porphyritic monzogranite range from ? 2.9 to 0.6, and from granitic porphyry vary from ? 3.3 to 1.9. The zircons have TDM2 of 1014 to 1196 Ma for the porphyritic monzogranite and 954 to 1224 Ma for the granitic porphyry, implying that these granitoids were likely derived from partial melting of a Late Mesoproterozoic juvenile lower crust. The Pb isotope compositions of the granitoids are similar to granites in South China, showing that the magma was sourced from the middle–lower crust in the southern Qinling tectonic unit. The Pb isotopic contrast between the Mo-bearing granitoids and ores shows that the Pb in the ore-forming solution was derived from fractionation of a Triassic magmatic system. δ34S values of sulfides are between 5.02 and 5.66‰, similar to those associated with magmatic-hydrothermal systems. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 216.2 ± 1.7 and 217.2 ± 2.0 Ma for the granitoids, consistent with a previously reported molybdenite Re-Os isochron age of 214.4 ± 7.1 Ma. This suggests that the Mo mineralization is related to the late Triassic magmatism in the West Qinling orogenic belt. In view of these geochemical results and known regional geology, we propose that both granitoid emplacement and Mo mineralization in the Wenquan deposit resulted from the Triassic collision between the South Qinling and the South China Block, along the Mianlue suture. Since Triassic granitoid plutons commonly occur along the Qinling orogenic belt, the Triassic Wenquan Mo-bearing granitoids highlight the importance of the Triassic tectono-magmatic belt for Mo exploration. In order to apply this metallogenic model to the whole Qinling orogen, further study is needed to compare the Wenquan deposit with other deposits.  相似文献   

5.
Transition metal isotopes are sensitive geochemical tracers of ore genesis. Here we present MC-ICP-MS analytical data of Cu isotope compositions from the Hongshan-Hongniu Cu deposit in Yunnan province. The δ65Cu values (δ65Cu = [(65Cu/63Cu)sample/(65Cu/63Cu)NIST976  1] × 1000) of seven whole-rock quartz monzonite porphyries and twenty-two chalcopyrite samples from the skarn ore-bodies display relatively narrow ranges from −0.15‰ to 0.38‰ and from −0.02‰ to 0.77‰, respectively. The overlap of δ65Cu values indicates a genetic relationship between the quartz monzonite porphyry and skarn ore-bodies. We also evaluate the spatial and temporal variations of Cu isotope compositions in the skarn ore-bodies by comparison with some well-documented porphyry deposits in the world. The quartz monzonite porphyry shows compositional zoning with the inner domain enriched in heavy Cu isotope and the skarn related to the porphyry depleted in heavy Cu isotope. The chalcopyrites that formed during the late stage of mineralization tend to be enriched in heavy Cu isotope, and this feature is analogous to porphyry deposits. The δ65Cu values of the quartz monzonite porphyry show typical features of hypogene mineralization, suggesting a potential scope for deep exploration and development in this deposit.  相似文献   

6.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

7.
The Tuwu–Yandong porphyry Cu belt is located in the Eastern Tianshan mountains in the eastern Central Asian Orogenic Belt. Petrochemical and geochronological data for intrusive and volcanic rocks from the Tuwu and Yandong deposits are combined with previous studies to provide constraints on their petrogenesis and tectonic affinity. New LA–ICP–MS zircon U–Pb ages of 348.3 ± 6.0 Ma, 339.3 ± 2.2 Ma, 323.6 ± 2.5 Ma and 324.1 ± 2.3 Ma have been attained from intrusive units associated with the deposits, including diorite, plagiogranite porphyry, quartz albite porphyry and quartz porphyry, respectively. The basalt and andesite, which host part of the Cu mineralization, are tholeiitic with high Al2O3, Cr, Ni and low TiO2 contents, enriched LREEs and negative HFSE (Nb, Ta, Zr, Ti) anomalies consistent with arc magmas. Diorites are characterized by low SiO2 content but high MgO, Cr and Ni contents, similar to those of high-Mg andesites. The parental magma of the basalt, andesite and diorite is interpreted to have been derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. The ore-bearing plagiogranite porphyry is characterized by high Na2O, Sr, Cr and Ni contents, low Y and Yb contents, low Na2O/K2O ratios and high Sr/Y ratios and high Mg#, suggesting an adakitic affinity. The high εNd(t) (5.02–9.16), low ISr (0.703219–0.704281) and high εHf(t) (8.55–12.99) of the plagiogranite porphyry suggest they were derived by a partial melting of the subducted oceanic crust followed by adakitic melt-mantle peridotite interaction. The quartz albite porphyry and quartz porphyry are characterized by similar Sr–Nd–Hf isotope but lower Mg# and whole-rock (La/Yb)N ratios to the plagiogranite porphyry, suggesting they were derived from juvenile lower crust, and negative Eu anomalies suggest fractionation of plagioclase. We propose that a flat subduction that started ca. 340 Ma and resulted in formation of the adakitic plagiogranite porphyry after a period of “steady” subduction, and experienced slab rollback at around 323 Ma.  相似文献   

8.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

9.
Southern Hunan Province, South China, is located in the central part of the Qin–Hang metallogenic belt and is characterized by abundant Cu–Pb–Zn and W–Sn polymetallic ore deposits. The Cu–Pb–Zn deposits are associated with Jurassic granodiorite porphyries whereas the W–Sn deposits occur within Jurassic granite porphyries. Here we present geochronologic and geochemical data for the Tongshanling Cu–(Mo)–Pb–Zn deposit and the Weijia W deposit in the district of Tongshanling, southern Hunan. Zircon U–Pb dating and molybdenite Re–Os geochronology indicate that the emplacement of the Tongshanling granodiorite porphyry and the associated Cu mineralization occurred at 162–160 Ma, slightly earlier than the formation of the Xianglinpu granite porphyry and associated W mineralization at 159–158 Ma. The Tongshanling granodiorite is high-K calc-alkaline, weakly peraluminous, and weakly fractionated with zircon εHf(t) values of − 15.1 to − 5.6. In contrast, the Xianglinpu granite is alkaline, peraluminous, and highly fractionated, with εHf(t) values of − 9.5 to 0.9. Our data indicate that the Tongshanling granodiorite is relatively oxidized and was formed by the partial melting of Paleoproterozoic crustal material with inputs of mafic magma which was derived from a subduction-modified lithospheric mantle. In contrast, the Xianglinpu granite porphyry is relatively reduced and was formed by direct interaction between the crust and asthenospheric mantle. The difference in magma generation and tectonics is considered to have resulted in the different types of mineralization associated with these two intrusive bodies.  相似文献   

10.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

11.
The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits. The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene). The mineralized porphyries are characterized by almost identical REE and trace element patterns. The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma. The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.703790–0.704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.8 to 8.4 and is similar to that of MORB. These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment. The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of − 2 to − 4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later. The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin. According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.2 ± 8.7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.9 ± 4.2 Ma), expressed as superposed hydrothermal mineralization. The Re–Os isotope data on molybdenite (376.9 ± 2.2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization. The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.  相似文献   

12.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

13.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

14.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

15.
Bangpu deposit in Tibet is a large but poorly studied Mo-rich (~ 0.089 wt.%), and Cu-poor (~ 0.32 wt.%) porphyry deposit that formed in a post-collisional tectonic setting. The deposit is located in the Gangdese porphyry copper belt (GPCB), and formed at the same time (~ 15.32 Ma) as other deposits within the belt (12 ~ 18 Ma), although it is located further to the north and has a different ore assemblage (Mo–Pb–Zn–Cu) compared to other porphyry deposits (Cu–Mo) in this belt. Two distinct mineralization events have been identified in the Bangpu deposit which are porphyry Mo–(Cu) and skarn Pb–Zn mineralization. Porphyry Mo–(Cu) mineralization in the deposit is generally associated with a mid-Miocene porphyritic monzogranite rock, whereas skarn Pb–Zn mineralization is hosted by lower Permian limestone–clastic sequences. Coprecipitated pyrite and sphalerite from the Bangpu skarn yield a Rb–Sr isochron age of 13.9 ± 0.9 Ma. In addition, the account of garnet decreases and the account of both calcite and other carbonate minerals increases with distance from the porphyritic monzogranite, suggesting that the two distinct phases of mineralization in this deposit are part of the same metallogenic event.Four main magmatic units are associated with the Bangpu deposit, namely a Paleogene biotite monzogranite, and Miocene porphyritic monzogranite, diabase, and fine-grained diorite units. These units have zircon U–Pb ages of 62.24 ± 0.32, 14.63 ± 0.25, 14.46 ± 0.38, and 13.24 ± 0.04 Ma, respectively. Zircons from porphyritic monzogranite yield εHf(t) values of 2.2–8.7, with an average of 5.4, whereas the associated diabase has a similar εHf(t) value averaging at 4.7. The geochemistry of the Miocene intrusions at Bangpu suggests that they were derived from different sources. The porphyritic monzogranite has relatively higher heavy rare earth element (HREE) concentrations than do other ore-bearing porphyries in the GPCB and plots closer to the amphibolite lithofacies field in Y–Zr/Sm and Y–Sm/Yb diagrams. The Bangpu diabase contains high contents of MgO (> 7.92 wt.%), FeOt (> 8.03 wt.%) but low K2O (< 0.22 wt.%) contents and with little fractionation of the rare earth elements (REEs), yielding shallow slopes on chondrite-normalized variation diagrams. These data indicate that the mineralized porphyritic monzogranite was generated by partial melting of a thickened ancient lower crust with some mantle components, whereas the diabase intrusion was directly derived from melting of upwelling asthenospheric mantle. An ancient lower crustal source for ore-forming porphyritic monzogranite explains why the Bangpu deposit is Mo-rich and Cu-poor rather than the Cu–Mo association in other porphyry deposits in the GPCB because Mo is dominantly from the ancient crust.The Bangpu deposit has alteration zonation, ranging from an inner zone of biotite alteration through silicified and phyllic alteration zones to an outer propylitic alteration zone, similar to typical porphyry deposits. Some distinct differences are also present, for example, K-feldspar alteration at Bangpu is so dispersed that a distinct zone of K-feldspar alteration has not been identified. Hypogene mineralization at Bangpu is characterized by the early-stage precipitation of chalcopyrite during biotite alteration and the late-stage deposition of molybdenite during silicification. Fluid inclusion microthermometry indicates a change in ore-forming fluids from high-temperature (320 °C–550 °C) and high-salinity (17 wt.%–67.2 wt.%) fluids to low-temperature (213 °C–450 °C) and low-salinity (7.3 wt.%–11.6 wt.%) fluids. The deposit has lower δDV-SMOW (− 107.1‰ to − 185.8‰) values compared with other porphyry deposits in the GPCB, suggesting that the Bangpu deposit formed in a shallower setting and is associated with a more open system than is the case for other deposits in this belt. Sulfides at Bangpu yield δ34SV-CDT values of − 2.3‰ to 0.3‰, indicative of mantle-derived S implying that coeval mantle-derived mafic magma (e.g., diabase) simultaneously supplied S and Cu to the porphyry system at Bangpu. In comparison, the Pb isotopic compositions (206Pb/204Pb = 18.79–19.28, 207Pb/204Pb = 15.64–15.93, 208Pb/204Pb = 39.16–40.45) of sulfides show that other metals (e.g., Mo, Pb, Zn) were likely derived mainly from an ancient crustal source. Therefore, the formation of the Bangpu deposit can be explained by a two-stage model involving (1) the partial melting of an ancient lower crust triggered by invasion of asthenospheric mantle-derived mafic melts that provide heat and metal Cu and (2) the formation of the Bangpu porphyry Mo–Cu system, formed by magmatic differentiation in the overriding crust in a post-collisional setting.  相似文献   

16.
This is a brief research report about the recently-discovered and currently being explored Dahutang tungsten deposit (or ore field) in northwestern Jiangxi, south-central China. The deposit is located south of the Middle–Lower Yangtze River valley Cu–Au–Mo–Fe porphyry–skarn belt (YRB). The mineralization is genetically associated with Cretaceous porphyritic biotite granite and fine-grained biotite granite and is mainly hosted within a Neoproterozoic biotite granodiorite batholith. The Dahutang ore field comprises veinlets-disseminated (~ 95% of the total reserve), breccia (~ 4%) and wolframite–scheelite quartz vein (~ 1%) ore styles. The mineralization and alteration are close to the pegmatite shell between the Cretaceous porphyritic biotite granite and Neoproterozoic biotite granodiorite and the three styles of ore bodies mentioned above are related to zoned hydrothermal alteration that includes greisenization, K-feldspar alteration, silicification, carbonatization, chloritization and fluoritization arranged in time (early to late) and space (bottom to top).Five samples of molybdenite from the three types of ores have been collected for Re/Os dating. The results show Re/Os model ages ranging from 138.4 Ma to 143.8 Ma, with an isochron age of 139.18 ± 0.97 Ma (MSWD = 2.9). The quite low Re content in molybdenite falls between 0.5 ppm and 7.8 ppm that is indicative of the upper crustal source. This is quite different from molybdenites in the YRB Cu–Au–Mo–Fe porphyry–skarn deposits that contain between 53 ppm and 1169 ppm Re, indicating a mantle source.The Dahutang tungsten system is sub-parallel with the YRB porphyry–skarn Cu–Au–Mo–Fe system. Both are situated in the north margin of the Yangtze Craton and have a close spatial–temporal relationship. This possibly indicates a comparable tectonic setting but different metal sources. Both systems are related to subduction of the Paleo-Pacific plate beneath the Eurasian continent in Early Cretaceous. The Cu–Au–Mo–Fe porphyry–skarn ores are believed genetically related to granitoids derived from the subducting slab, whereas the porphyry W deposits are associated with S-type granitoids produced by remelting of the upper crust by heat from upwelling asthenoshere.  相似文献   

17.
The Baoshan Cu-polymetallic deposit is a recently discovered skarn deposit in the northern Lesser Xing’an Range, NE China. The orebodies are mainly hosted in the contact zone between granitic intrusions and Lower Cambrian dolomitic crystalline limestones or skarns. We present here zircon U–Pb and molybdenite Re–Os age data, whole-rock geochemistry, and zircon Hf isotopic data to constrain the geodynamic mechanisms of igneous activity and metallogenesis within the Baoshan Cu–polymetallic deposit. LA–ICP–MS zircon U–Pb dating suggests that a hornblende–quartz monzonite and porphyritic biotite granite were emplaced at 252.45 ± 0.70 Ma and 251.10 ± 0.98 Ma, respectively. Molybdenite separated from ore-bearing quartz veins or skarn-type ores yields a weighted mean model age of 250.3 ± 3.4 Ma, which coincide with the emplacement of the igneous rocks. These data suggest that the Late Permian-Early Triassic magmatic and mineralization event led to the formation of the Baoshan Cu–polymetallic deposit. Granitic intrusions are closely associated with this mineralization and have high contents of SiO2 (60.90–68.98 wt.%), Al2O3 (15.15–16.98 wt.%) and K2O (2.77–4.17 wt.%), with A/CNK ratios of 0.86–0.96. These granites are classified as metaluminous and high-K calc-alkaline I-type granites, and are enriched in Rb, Th, U, and K, and depleted in Nb, Ta, P, and Ti. Moreover, Moreover, the hornblende–quartz monzonite and porphyritic biotite granite have geochemical characteristics similar to adakites and island arc calc-alkaline rocks, respectively. In situ zircon Hf isotope data on the hornblende–quartz monzonite samples show εHf(t) values from +0.1 to +3.1, and porphyritic biotite granite samples exhibit heterogeneous εHf(t) values from −5.4 to +1.1. The geochemical and isotopic data for the Baoshan intrusions indicate that the Late Permian–Early Triassic continental–continental collision caused over thickening and delamination of the lower crust. Partial melting of delaminated lower crust formed the primary adakitic magmas, which may have reacted with surrounding mantle peridotite during ascent. Hornblende–quartz monzonite was formed by the emplacement of the adakitic magmas, whereas the formation of the porphyritic biotite granite was caused by the mixing of adakitic magmas with ancient crustal materials during ascent. Moreover, ore-forming materials were typically derived from the adakitic magmas with high oxygen fugacity, which incorporated significant amounts of ore-forming elements. Based on the regional geological history and the new geochemical and isotopic data from intrusions, we suggest that diagenesis and mineralization of the Baoshan Cu–polymetallic deposit took place in a transitional tectonic setting from collisional orogeny to extension, after collision of the North China Plate and Songnen Block, during the latter stages of the Xingmeng orogeny.  相似文献   

18.
The Dabu Cu-Mo porphyry deposit is situated in the southern part of the Lhasa terrane within the post-collisional Gangdese porphyry copper belt (GPCB). It is one of several deposits that include the Qulong and Zhunuo porphyry deposits. The processes responsible for ore formation in the Dabu deposit can be divided into three stages of veining: stage I, quartz–K-feldspar (biotite) ± chalcopyrite ± pyrite, stage II, quartz–molybdenite ± pyrite ± chalcopyrite, and stage III, quartz–pyrite ± molybdenite. Three types of fluid inclusions (FIs) are present: liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), and solid bearing multi-phase (S-type) inclusions. The homogenization temperatures for the FIs from stages I to III are in the ranges of 272–475 °C, 244–486 °C, and 299–399 °C, and their salinities vary from 2.1 to 49.1, 1.1 to 55.8, and 2.9 to 18.0 wt% NaCl equiv., respectively. The coexistence of S-type, V-type and L-type FIs in quartz of stage I and II with similar homogenization temperatures but contrasting salinities, indicate that fluid boiling is the major factor controlling metal precipitation in the Dabu deposit. The ore-forming fluids of this deposit are characterized by high temperature and high salinity, and they belong to a H2O–NaCl magmatic–hydrothermal system. The H–O–S–Pb isotopic compositions indicate that the ore metals and fluids came primarily from a magmatic source linked to Miocene intrusions characterized by high Sr/Y ratios, similar to other porphyry deposits in the GPCB. The fluids forming the Dabu deposit were rich in Na and Cl, derived from metamorphic dehydration of subducted oceanic slab through which NaCl-brine or seawater had percolated. The inheritance of ancient subduction-associated arc chemistry, without shallow level crustal assimilation and/or input of the meteoric water, was responsible for the generation of fertile magma, as well as CO2-poor and halite-bearing FIs associated with post-collisional porphyry deposits. The estimated mineralization depths of Qulong, Dabu and Zhunuo deposits are 1.6–4.3 km, 0.5–3.4 km and 0.2–3.0 km, respectively, displaying a gradual decrease from eastern to western Gangdese. Deep ore-forming processes accounted for the generation of giant-sized Qulong deposit, because the exsolution of aqueous fluids with large fraction of water and chlorine in deep or high pressure systems can extract more copper from melts than those formed in shallow systems. However, the formation of small-sized Dabu deposit can be explained by a single magmatic event without additional replenishment of S, metal, or thermal energy. In addition, the ore-forming conditions of porphyry Cu–Mo deposits in GPCB are comparable to those of porphyry Cu ± Au ± Mo deposits formed in oceanic subduction-related continental or island arcs, but differ from those of porphyry Mo deposit formed in the Dabie-Qinling collisional orogens. The depth of formation of the mineralization and features of primary magma source are two major controls on the metal types and ore-fluid compositions of these porphyry deposits.  相似文献   

19.
The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U–Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re–Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu–(Au) porphyry systems, a Late Cretaceous porphyry Cu–Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu–(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.  相似文献   

20.
The Yandong porphyry copper deposit, located in the Eastern Tianshan Mountains, Xinjiang, China, is part of the Central Asian Orogenic Belt. The Yandong deposit is hosted by a volcanic complex in the Early Carboniferous Qi’eshan Group and a felsic intrusion. The complex consists of andesite, basalt, diorite porphyry, and porphyritic quartz diorite. The felsic intrusion is a plagiogranite porphyry emplaced within the complex. The diorite porphyry and plagiogranite porphyry yield SIMS zircon U–Pb ages of 340.0 ± 3 and 332.2 ± 2.3 Ma, respectively. Element geochemistry shows that both the complex and plagiogranite porphyry formed in the Dananhu–Tousuquan island arc, a Carboniferous magmatic arc.The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite–sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite–sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号