首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
This paper investigates the static pullout resistance of anchor chains embedded into cohesionless soil. The anchor chains, which are made of steel, were buried into Jumunjin sand whose relative density was set to approximately 60%. The anchor chains were horizontally pulled out through a displacement of 70?mm in laboratory model tests. Three different embedment depths and seven different numbers of chain links were adopted. The pullout resistance of the anchor chains was found to increase with increasing embedment depth and the number of anchor chain links. The measured resistance was significantly higher than the calculated frictional resistance, implying that the passive resistance at the front of the anchor chain significantly contributes to the pullout resistance. The contribution of the passive resistance tends to decrease with increasing number of chain links.  相似文献   

2.
The shoring system that consists of soldier piles and anchor tiebacks is often used in deep excavations in sandy deposits. However, uncertainties often exist in the design of such shoring systems. In this article, a simplified-robust geotechnical design method is proposed to account for these uncertainties in the shoring system design. Specifically, for a given deep excavation, uncertain soil parameters and surcharges are treated as noise factors, and the parameters of soldier piles and tieback anchors are treated as design parameters. Robust design is then implemented as a multiobjective optimization problem, in which the design robustness is sought along with cost efficiency and safety requirements. A trade-off between design robustness and cost efficiency exists and the optimization usually leads to a Pareto front. By applying the knee point concept, the most preferred design that meets the safety requirements and yields the best compromise between design robustness and cost efficiency can be identified on the Pareto front. Improvements made to the existing robust geotechnical design method include an efficient formulation of the design robustness and a new procedure for finding the most preferred design in the design pool. The new simplified-robust geotechnical design method is illustrated with a real-world excavation case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号