首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
This paper presents bilge keel loads and hull pressure measurements carried out on a rotating cylinder in a free surface water basin. A flat plate bilge keel and one more complex shaped bilge keel were studied to investigate the geometry effect. The draft of the cylinder was varied to study the effect of the vicinity of the free surface on the bilge keel loads and hull pressures. The rotation axis of the cylinder was fixed to define a pure roll experiment (one degree of freedom).The cylinder was subject to forced oscillations of varying amplitude leading to a KC range of 0.3–16. Using Fourier analysis the first three harmonic coefficients representing the normal bilge keel load were derived. The first harmonic drag and inertia coefficients are in good agreement to existing experimental data obtained for wall bounded flat plates fitted in a U-shaped water tunnel as reported by Sarpkaya and O’Keefe (1996). New insight is gained by the fact that the addition of higher harmonic contributions is essential to capture the time varying bilge keel normal force.The pressure measurements next to the bilge keel are compared to measurements reported by Ikeda et al. (1979). Similar findings are obtained, showing that the pressure on the hull in front of the moving bilge keel is KC independent while the vortex system in the wake of the bilge keel leads to KC dependent hull pressure distributions. The hull pressure jump over the bilge keel correlates well to the force coefficient on the bilge keel. The complex nature of the vortex induced hull pressures is manifested. The empirically derived hull pressure distribution by Ikeda et al. (1979) for the time instant of maximum velocity is shown to correlate reasonably well to the measured data with some conservatism in the absolute value.Although a cylinder is very different from a ship-shaped section, the experiments provide essential insight into the physics associated with roll damping and into the factors that should be included in a roll damping prediction method.  相似文献   

2.
A practical method to account for the influence of sinkage and trim on the drag of a freely floating (free to sink and trim) common monohull ship at a Froude number F  0.45 is considered. The sinkage and the trim are estimated via two alternative simple methods, considered previously. The drag is also estimated in a simple way, based on the classical Froude decomposition into viscous and wave components. Specifically, well-known semiempirical expressions for the friction drag, the viscous pressure drag and the drag due to hull roughness are used, and the wave drag is evaluated via a practical linear potential flow method. This simple approach can be used for ship models as well as full-scale ships with smooth or rough hull surfaces, and is well suited for early ship design and optimization. The method considered here to determine the sinkage and the trim, and their influence on the drag, yields theoretical predictions of the drag of the Wigley, S60 and DTMB5415 hulls that are much closer to experimental measurements than the corresponding predictions for the hull surfaces of the ships in equilibrium position at rest. These numerical results suggest that sinkage and trim effects, significant at Froude numbers 0.25 < F, on the drag of a typical freely floating monohull ship can be realistically accounted for in a practical manner that only requires simple potential flow computations without iterative computations for a sequence of hull positions.  相似文献   

3.
A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900 kW, and with length overall of around 30 m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130 l/h at 4.4 kn) and the steaming (100–130 l/h at 11 kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.  相似文献   

4.
The main purpose of this study is to establish a better understanding of the relationship between drag reduction and surface roughness. Experiments were conducted to measure the force and flow characteristics of a circular cylinder with different types of artificial surface roughness over the range 6 × 103 < Re < 8 × 104 (Re is based on the cylinder diameter D). The roughness cylinder was formed by covering the exterior surface of the cylinder with uniformly distributed (1) sandpaper, (2) netting, and (3) dimples. The roughness coefficient ranged from k/D = 0.0028 to 0.025 (k is the roughness height). A detailed quantitative measurement of the flow field around the cylinder using Particle Imaging Velocimetry (PIV) was carried out. The hydrodynamic force coefficients (drag and lift) of the rough cylinders are compared against those of a smooth cylinder measured under the same flow conditions. It is found that certain configuration of surface roughness significantly reduces the mean drag coefficient of the cylinder, particularly at large Reynolds numbers. In addition, the root-mean-square (r.m.s.) lift coefficient of the rough cylinders is considerably lower than that of a smooth cylinder.  相似文献   

5.
Large eddy simulations of the flow around a circular cylinder at high Reynolds numbers are reported. Five Reynolds numbers were chosen, such that the drag crisis was captured. A total of 18 cases were computed to investigate the effect of gridding strategy, turbulence modelling, numerical schemes and domain width on the results. It was found that unstructured grids provide better resolution of key flow features, when a ‘reasonable’ grid size is to be maintained.When using coarse grids for large eddy simulation, the effect of turbulence models and numerical schemes becomes more pronounced. The dynamic mixed Smagorinsky model was found to be superior to the Smagorinsky model, since the model coefficient is allowed to dynamically adjust based on the local flow and grid size. A blended upwind-central convection scheme was also found to provide the best accuracy, since a fully central scheme exhibits artificial wiggles, due to dispersion errors, which pollute the solution.Mean drag, fluctuating lift Strouhal number and base pressure are compared to experiments and empirical estimates for Reynolds numbers ranging from 6.31 × 104 to 5.06 × 105. In terms of the drag coefficient, the drag crisis is well captured by the present simulations, although the other integral quantities (rms lift and Strouhal number) show larger discrepancies. For the lowest Reynolds number, the drag is seen to be more sensitive to the domain width than the spanwise grid spacing, while at the higher Reynolds numbers the grid resolution plays a more important role, due to the larger extent of the turbulent boundary layer.  相似文献   

6.
When fluid flow passes a cylinder, the drag crisis phenomenon occurs between the sub-critical and the super-critical Reynolds numbers. The focus of the present studies was on the numerical prediction of the drag crisis based on CFD methods. In this work, block structured meshes with refined grids near the cylinder surface and in the downstream were employed. Both 2D and 3D simulations were performed using various turbulence models, including the SST k  ω model, the k  ϵ model, the SST with LCTM, the DES model, and the LES model. In the convergence studies, the effects of the grid size, the time step, the first grid size and the aspect ratio (for 3D simulations) on the solutions were examined. The errors due to spatial and time discretizations were quantified according to a V&V procedure. Validation studies were carried out for various Reynolds numbers between Re = 6.31 × 104 and 7.57 × 105. The averaged drag force, the RMS of lift force and the Strouhal number were compared with experimental data. The studies indicated that standard 2D and 3D RANS methods were inadequate to capture the drag crisis phenomenon. The LES method however has the potential to address the problem.  相似文献   

7.
The aim of this paper is to evaluate the accuracy, stability and efficiency of the overset grid approach coupled with the RANS (Reynolds Averaged Navier-Stokes) model via the benchmark computations of flows around a stationary smooth circular cylinder. Two dimensional numerical results are presented within a wide range of Reynolds numbers (6.31 × 104  7.57 × 105) including the critical flow regime. All the simulations are carried out using the RANS solver pimpleFoam provided by OpenFOAM, an open source CFD (Computational Fluid Dynamics) toolkit. Firstly, a grid convergence study is performed. The results of the time-averaged drag and lift force coefficients, root-mean square value of lift force coefficient and Strouhal number (St number) are then compared with the experimental data. The velocity, vorticity fields and pressure distribution are also given. One main conclusion is that the numerical solutions in regard to a fixed cylinderare not deteriorated due to the implementation of the overset grid. Furthermore, it can be an appealing approach to facilitate simulations of Vortex Induced Vibrations (VIV), which involves grid deformation. The present study is a good start to implement the overset grid to solve VIV problems in the future.  相似文献   

8.
《Coastal Engineering》2006,53(11):929-945
A finite difference model based on a recently derived highly-accurate Boussinesq-type formulation is presented. Up to the third-order space derivatives in terms of the velocity variables are retained, and the horizontal velocity variables are re-formulated in terms of a velocity potential. This decreases the total number of unknowns in two horizontal dimensions from seven to five, simplifying the implementation, and leading to increased computational efficiency. Analysis of the embedded properties demonstrates that the resulting model has applications with errors of 2 to 3% for (wavenumber times depth) kh  10 in terms of dispersion and kh  4 in terms of internal kinematics. The stability and accuracy of the discrete linearised systems are also analysed for both potential and velocity formulations and the advantages and disadvantages of each are discussed. The velocity potential model is then used to study physically demanding problems involving highly nonlinear wave run-up on a bottom-mounted (surface-piercing) plate. New cases involving oblique incidence are considered. In all cases, comparisons with recent physical experiments demonstrate good quantitative accuracy, even in the most demanding cases, where the local wave steepness can exceed (waveheight divided by wavelength) H / L = 0.20. The velocity potential model is additionally shown to have numerical advantages when dealing with wave–structure interactions, requiring less smoothing around exterior structural corners.  相似文献   

9.
The forced constant acceleration exit of two-dimensional bodies through a free-surface is computed for various 2D bodies (symmetric wedges, asymmetric wedges, truncated wedges and boxes). The calculations are based on the fully non-linear time-stepping complex-variable method of Vinje and Brevig (1981). The model was formulated as an initial boundary-value problem (IBVP) with boundary conditions specified on the boundaries (dynamic and kinematic free-surface boundary conditions) and initial conditions at time zero (initial velocity and position of the body and free-surface particles). The formulated problem was solved by means of a boundary-element method using collocation points on the boundary of the domain and stepped forward in time using Runge–Kutta and Hamming predictor–corrector methods. Numerical results for the deformed free-surface profile, pressure along the wetted region of the bodies and force experienced by the bodies are given for the exit. The analytical added-mass force is presented for the exit of symmetric wedges and boxes with constant acceleration using conformal mappings. To verify the numerical results, the added-mass force and the numerical force are compared and give good agreement for the exit of a symmetric wedge at a time zero (t = 0) as expected but only moderate agreement for the box.  相似文献   

10.
A flat plate in pitching motion is considered as a fundamental source of locomotion in the general context of marine propulsion. The experimental as well as numerical investigation is carried out at a relatively small Reynold number of 2000 based on the plate length c and the inflow velocity U. The plate oscillates sinusoidally in pitch about its 1/3  c axis and the peak to peak amplitude of motion is 20°. The reduced frequency of oscillation k = πfc/U is considered as a key parameter and it may vary between 1 and 5. The underlying fluid-structure problem is numerically solved using a compact finite-differences Navier–Stokes solution procedure and the numerical solution is compared with Particle Image Velocimetry (PIV) measurements of the flow field around the pitching foil experimental device mounted in a water-channel. A good agreement is found between the numerical and experimental results and the threshold oscillation frequency beyond which the wake exhibits a reverse von Kármán street pattern is determined. Above threshold, the mean velocity in the wake exhibits jet-like profiles with velocity excess, which is generally considered as the footprint of thrust production. The forces exerted on the plate are extracted from the numerical simulation results and it is shown, that reliable predictions for possible thrust production can be inferred from a conventional experimental control volume analysis, only when besides the wake's mean flow the contributions from the velocity fluctuation and the pressure term are taken into account.  相似文献   

11.
Spectral energy dissipation of random waves due to salt marsh vegetation (Spartina alterniflora) was analyzed using field data collected during a tropical storm. Wave data (significant wave heights up to 0.4 m in 0.8 m depth) were measured over a two-day period along a 28 m transect using 3 pressure transducers. The storm produced largely bimodal spectra on the wetland, consisting of low-frequency swell (7–10 s) and high-frequency (2–4.5 s) wind-sea. The energy dissipation varied across the frequency scales with the largest magnitude observed near the spectral peaks, above which the dissipation gradually decreased. The wind-sea energy dissipated largely in the leading section of the instrument array in the wetland, but the low-frequency swell propagated to the subsequent section with limited energy loss. Across a spectrum, dissipation did not linearly follow incident energy, and the degree of non-linearity varied with the dominant wave frequency. A rigid-type vegetation model was used to estimate the frequency-dependent bulk drag coefficient. For a given spectrum, this drag coefficient increased gradually up to the peak frequency and remained generally at a stable value at the higher frequencies. This spectral variation was parameterized by employing a frequency-dependent velocity attenuation parameter inside the canopy. This parameter had much less variability among incident wave conditions, compared to the variability of the bulk drag coefficient, allowing its standardization into a single, frequency-dependent curve for velocity attenuation inside a canopy. It is demonstrated that the spectral drag coefficient predicts the frequency-dependent energy dissipation with more accuracy than the integral coefficient.  相似文献   

12.
The use of air cavities beneath ship hulls can lead to significant drag reduction. A study of air-ventilated cavities under a simplified hull has been undertaken. Experiments with a 56-cm-long stepped-hull model were carried in an open-surface water channel at flow velocities 28–86 cm/s. The air-cavity parameters were measured at different model positions. Different cavity forms, a strong growth of the cavity length with the flow velocity, and an optimal trim angle for the largest air-cavity area were identified. Numerical studies were conducted using a linear potential-flow method and the finite-volume viscous code Fluent. The computationally inexpensive three-dimensional potential-flow modeling predicted air-cavity shapes and provided qualitative agreement with the measured average length of the air cavity. Two-dimensional viscous modeling reasonably predicted macroscopic features and viscous effects in the air-cavity flow, while exaggerated the mixed-phase flow regions.  相似文献   

13.
Low carbon shipping research focuses on energy efficiency and mitigation measures related to operations and technology. However, reducing energy use and greenhouse gas emissions associated with a vessel’s material production receives limited attention. Material efficiency is defined as “providing material services with less material production and processing”. The current business model for ship building and breaking does not embrace fully material efficiency principles. Exploring a case study of a vessel's steel hull, this study applies a Life Cycle Assessment approach to determine the effectiveness of material efficiency to reduce CO2 emissions. When compared to Business as Usual, designing and manufacturing for 100% hull reuse provides an emissions reduction of 29% from 221,978 t CO2 to 158,285 t CO2; 50% reuse provides a 10% reduction (199,816 t CO2). From a technical and safety perspective there remain key barriers that need addressing: a vessel’s hull would require to be designed for dismantling to improve reuse; the operation and maintenance schedule must ensure the value of the steel is retained and; data must flow between key stakeholders on the quality of the steel. Despite these challenges, progressing material efficiency would require different business models that reach out and integrate the whole supply chain. There is a need for public and privately funded demonstration projects at a range of scales and markets, to provide investors the confidence that there is retained value in the steel hull when it reaches its end-of-life.  相似文献   

14.
15.
The present investigation focuses on the effects of the stern appendages and the propulsion system on the hydro-loads generated by the propeller during off-design conditions, with particular emphasis on the in-plane components. Recent experimental investigations carried out by free running model tests [7], [8] and CFD analysis [5] for a modern twin screw model, highlighted that maneuvers at small drift angles and yaw rates might be as critical as the tighter ones due to complex propeller-wake interactions. Therefore, design criteria should take into account also these operative conditions, in order to reduce the effects of propeller-wake interaction phenomena that degrade the overall propulsive efficiency, induce shaft/hull structural vibration and increase noise emission. In the present study we analyze the effects of geometric and propulsive modifications with respect to the twin screw configuration studied in [5]. In particular, the effect of the centreline skeg, propeller direction of rotation and control strategies of the propulsion plant on the propeller bearing loads have been investigated from the analysis of the nominal wake in maneuvring conditions, computed by unsteady RANSE simulations coupled with a propeller model based on Blade Element Theory. The considered test cases were turning circle maneuvers with different rudder angles at FN = 0.265.  相似文献   

16.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

17.
《Ocean Modelling》2011,39(3-4):244-250
In order to model the wave-in-ice climate on a geophysical scale, a continuum viscoelastic model has been developed [Wang, R., Shen, H.H., 2010. Gravity waves propagating into an ice-covered ocean: a viscoelastic model. J. Geophys. Res. 115, C06024. doi:10.1029/2009JC005591]. In this model, two modes were identified to be dominant, each for the low or high elasticity range, respectively. In the intermediate elasticity range, both modes have comparable attenuation rates and wave numbers, and they could be co-dominant. Inspired by the Eigenfunction Expansion Matching Method, this paper presents an approximate approach to solve the wave propagation characteristics in the whole physical range of elasticity. A monochromatic wave propagating from semi-infinite open water into semi-infinite ice-covered water is considered. Only two transmitted wave modes are included in the eigenfunction expansions for the ice-covered water. These two modes correspond to the dominant mode under relatively low or high elasticity, respectively. Evanescent wave modes in open water are ignored. By minimizing the matching errors, the least square solution is obtained. For the pure elastic ice cover, the results are compared with the exact solution from the thin elastic plate model. The comparison is in good agreement when the wave period is larger than 10 s. Mild discrepancies exist when the period is smaller than 10 s. The present model provides the simplest way to describe wave propagation characteristics in different types of ice covers.  相似文献   

18.
A renewable energy harvester using the piezoelectric effect is developed for the ocean tidal and wind flow. The harvester is made of connected driving blades to an octo-generator, which has a rotator with n blades and a stator attached by eight mass-spring-piston-cylinder-piezoelectricity devices. The resonance and force magnification are utilized to increase the power output of the harvester. A corresponding mathematical model is developed to calculate the root mean square of the generated electric power. The simulation results indicate that the generated power is largely enhanced when the near-resonant condition is established. The power increases with increases in the magnetic flux density, the large-to-small diameter ratio of the cylinder, the size of magnetic bar face, and decreases in the gap between two magnetic faces and the size of the piezoelectric bar face. A generated power of 5 kW is realized by the harvester working under an ocean tidal speed, V = 1.75 m/s, and its geometric and material properties of driving length L = 7.5 m, spring constant kv = 65000 N/m, gap between the two magnets s = 0.0015 m, large to small diameter ratio of the cylinder z = 6, and magnetic flux density Br = 1.45 T.  相似文献   

19.
Between 1988 and 1994, twenty time-series sediment traps were deployed at different water depths in the Canary Island region, off Cape Blanc (Mauritania), and off Cape Verde (Senegal). Lithogenic particle fluxes and grain size distributions of the carbonate-free fraction of the trapped material show a high impact of dust transported either in the northeast trade winds or the Saharan Air Layer (SAL). Highest annual mean lithogenic fluxes (31.2–56.1 mg m-2 d-1) were observed at the Cape Blanc site, and largest annual mean diameters (>6 μm) were found off Cape Verde (14.5–16.9 μm) and off Cape Blanc (15.2–16.7 μm). Lowest annual lithogenic fluxes (11.4–21.2 mg m-2 d-1 ) and smallest mean diameters (13.5–13.7 μm) occurred in the Canary Island region. A significant correlation of organic carbon and lithogenic fluxes was observed at all sites. Off Cape Blanc, fluxes and mean diameters correlated well between upper (around 1000 m depth) and lower traps (around 3500 m depth), indicating a fast and mostly undisturbed downward transport of particulate matter. In contrast, a major correlation of fluxes without correlating mean diameters occurred in the Canary Island region, which translates into a fast vertical transport plus scavenging of laterally advected material with depth at this site. The seasonality of lithogenic fluxes was highest in the Canary Island region and off Cape Verde, reflecting strong seasonal patterns of atmospheric circulation, with highest occurrence of continental winds in the trade wind layer during winter. In addition, grain size statistics reflect a dominant change of dust transport in the trade winds during winter/spring and transport in the SAL during summer 1993 at the Cape Verde site. Highest lithogenic fluxes during winter were correlated with mean diameters around 10–13 μm, whereas lower fluxes during summer consisted of coarse grains around 20 μm. Annual mean dust input wascalculated from lithogenic fluxes in the range 0.7×106–1.4×106 t yr-1, roughly confirming both sediment accumulation rates and atmospheric model calculations reported previously from this area.  相似文献   

20.
As part of the multidisciplinary programme BIOZAIRE devoted to studying deep-sea benthic ecosystems in the Gulf of Guinea, particulate input and its relationship with near-bottom hydrodynamics were monitored using long-term moorings from 2000 to early 2005. Particular attention was given to material input through the Congo (ex-Zaïre) submarine channel that extends 760 km from the Congo River mouth to the abyssal plain (>5100 m) near 6°S. Due to its direct connection to the Congo River, the Congo canyon and channel system are characterised by particularly active recent sediment transport. During this first in situ long-term monitoring along the channel, an energetic turbidity event was observed in January 2004 at three locations along the channel from 3420 to 4790 m in depth. This event tilted and displaced the moorings installed at 3420 m (site ZR′) and 4070 m (site ZD′), and resulted in high sediment deposition at all three mooring sites. The event moved at an average velocity of 3.5 m s−1 along the numerous channel meanders between 3420 and 4070 m, then at 0.7 m s−1 between 4070 m and the end of the channel at 4790 m. The particle cloud rose above the top of the valley at 4070 m (site ZD′), but not at 3420 m (site ZR′) where the channel was too deep. Lastly, the mooring line broke at site ZD′ in October 2004 probably due to a strong event like that of 2001 previously described by Khripounoff et al. [Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Denniellou, B., Savoye, B., 2003. Direct observation of intense turbidity activity in the Zaire submarine valley at 4000 m water depth. Marine Geology (194), 151–158]. Between these strong events, several peaks of high turbidity and particle flux occurred, but without noticeable current increases. These events were probably due to local sliding of sediment accumulated on the walls or terraces on the side of the channel. The area near 4000 m depth and the lobe appear to be the main depocentres of particulate input rich in organic matter derived from the Congo River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号