首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and significantly affected by the anchor line. Based on the coupled Eulerian–Lagrangian (CEL) method, a numerical approach incorporating anchor line effects is developed to investigate comprehensive anchor behaviors in the soil, including penetration of drag anchors, keying of suction embedded plate anchors and diving of gravity installed anchors. Compared to the method directly incorporating the anchor line into the CEL analysis, the proposed method is computationally efficient. To examine the robustness and accuracy of the proposed method, numerical probe tests and then comparative studies are carried out. It is found that the penetration (or diving) and keying behaviors of anchors can be well simulated. A parametric study is also undertaken to quantify the effects of various factors on the behavior of OMNI-Max anchors, whose mechanisms are not yet fully understood. The maximum embedment loss of OMNI-Max anchors during keying is not influenced by the initial anchor embedment depth, whereas significantly increases with increasing drag angle at the embedment point. With decreasing initial anchor embedment depth or increasing soil strength gradient, drag angle at the embedment point and diameter of the anchor line, the behavior of OMNI-Max anchors could change from diving to pullout, which is undesirable in offshore engineering practice. If the drag angle increases over a certain limit, the anchor will fail similar to a suction anchor.  相似文献   

2.
Attributed to good performance in the seabed, drag anchors are adopted as an effective anchoring solution in deepwater mooring systems. This type of anchors is drag installed, companying with comprehensive behaviors during movement of the anchor in the seabed, which make the anchor trajectory and therefore the final embedment position difficult to be predicted. On the basis of the mechanical model and analytical procedure, an analytical method is proposed for exploring comprehensive behaviors of drag anchors in both clay and sand. The anchor behaviors are classified as keying, pulling out and diving. The bearing capacity and the trajectory of the anchor can be predicted through the combination of the three behaviors. By comparing analytical predictions with experimental data and other predictions, the efficiency and veracity of the theoretical model are validated. A parametric study is also performed to investigate the effects of different parameters, and to further understand the comprehensive anchor behaviors in the seabed. The present work provides an efficient theoretical tool for analyzing comprehensive behaviors of drag anchors in either clayey or sandy seabed.  相似文献   

3.
拖曳锚由于其承载性能和深水中便于安装被广泛应用于海洋工程系泊系统中,如:适用于悬链式系泊系统的传统拖曳锚和适用于绷紧式系泊系统的法向承力锚。拖曳锚安装过程中涉及诸多运动特性:锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹。基于大变形有限元分析技术耦合的欧拉-拉格朗日法,并引入缆绳方程,建立起锚-缆绳-海床土耦合作用的有限元分析模型;模拟了拖曳锚在均质和线性强度黏土中的嵌入安装过程,研究了锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹等运动特性;通过与已有的有限元分析方法及理论方法进行对比,验证了该分析模型的有效性;与已有的有限元分析方法相比,提出的分析模型有效地提高了计算效率。  相似文献   

4.
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.  相似文献   

5.
作为深海工程应用中一种新型的拖曳嵌入式系泊基础,法向承力锚与目前新型的深水绷紧索系泊方式结合,在深水条件下的优势非常明显.综合比较了新型拖曳锚、吸力锚以及桩锚在施工、性能以及经济性等多方面的特点.提出了开展新型拖曳锚研发的若干关键技术.在对国外的实验研究现状进行综合评述的基础上,重点介绍了在构建新型拖曳锚模型实验平台方面取得的成果,涉及模型水槽、拖曳与回收系统、测量系统、模型锚板设计以及拖曳-系泊转换机构等关键技术.  相似文献   

6.
Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil,but also by the characteristics of the installation line.The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited.In the present study,the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning.Based on the two mechanical models for embedded lines and drag anchors,the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils.Since the drag angle at the shackle is the most important parameter in the positioning equations,a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed.The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils.By comparing with the model flume experiments,the sensitivity,effectiveness and veracity of the positioning method are well verified.  相似文献   

7.
The penetration behavior and trajectory of the drag anchor in seabed soils are not only determined by properties of the anchor and soil, but also controlled by the installation line especially the segment embedded in the soil. Correctly understanding and describing reverse catenary properties of the embedded line are crucial for improving the drag embedment performance, precisely predicting the anchor trajectory, and solving the positioning problem in offshore applications. The investigation on reverse catenary problems demonstrates that, the reverse catenary shape of the embedded line has to be solved almost through numerical incremental methods. In the present study, based on the mechanical model for the embedded line, the relationship between the tension and geometry of the embedded line, and the interactional equation between the anchor and embedded line are derived. By introducing the concept of the initial embedment depth of the installation line, the reverse catenary equation and the expression for calculating the length of the embedded line are obtained for soils with a linear strength, and the position of the embedment point can be reasonably solved through the derived reverse catenary equation. The reverse catenary equation is then introduced into the kinematic model for drag anchors, which combines the drag anchor, the installation line and the movement of the anchor handling vessel being an interactional system. More information related to the drag embedment problem can be definitely gained through the present work, including not only the anchor behaviors such as the trajectory, penetration direction and ultimate embedment depth, but also the properties of the installation line for both the embedded and horizontal segments. By comparing with drum centrifuge tests and model flume experiments, the efficiency of the theoretical method for predicting the anchor trajectory is well verified.  相似文献   

8.
Taut mooring systems have become prospective alternatives for the station keeping of offshore floating facilities in deep water. The associated embedded anchors cause a part of the mooring line to be buried in the seabed − the inverse catenary − which introduces a requirement to predict the load and uplift angle at the padeye, where the chain is connected to the anchor. The padeye load and angle depend on the shape and tension profile of the inverse catenary, which must be assessed in the mooring system design. The dynamic interaction between the embedded chain and the soil in the inverse catenary is not usually considered in this analysis. Instead, the inverse catenary is assessed statically, albeit potentially using cyclically-degraded soil strength parameters. The present study employs the lumped mass method to simulate the dynamic response of mooring lines under different imposed oscillations at the fairlead, where the chain is connected to the floating facility. A new chain-soil interaction model, which includes hysteresis effects associated with irrecoverable relative chain-soil displacement is calibrated by experimental results. Simulations of cyclic vessel motion are then performed, and the resulting chain-seabed interaction is observed. During constant-amplitude vessel motion cycles, the load angle at the padeye significantly decreases due to progressive ratcheting or ‘shakedown’ of the inverse catenary from the initial static profile towards a straighter profile. This effect is due to the hysteretic soil response and creates a less onerous loading condition for the anchor which may be beneficial, but is conventionally overlooked in design. At the end of the present study, an elastic bound method is proposed to estimate the profile of the inverse catenary after shakedown. A parametric study illustrates the performance of this simple method for predicting the steady state condition.  相似文献   

9.
法向承力锚(Vertically Loaded Plate Anchor,VLA)是一种适用于深水的新型系泊基础,它的拖曳安装过程直接决定了其系泊定位的精度和锚体的最终承载能力。综合考虑VLA锚体、锚泊线和上部船体的运动,建立了一种新的准静力整体分析模型。模型包括不断贯入海床的锚体、锚泊线(土中反悬链段和水中悬链段)和安装船体三部分,针对确定的锚泊线长度,安装船运动张紧锚泊线进行安装的过程,计算了此过程中锚体的运动轨迹、锚泊线形态和作用在船体上的锚泊线张力矢量的变化,重点分析了不同抛链长度和海床土体的参数对安装过程控制的影响,发现链长与水深之比达到5时,接近极限贯入深度。  相似文献   

10.
法向承力锚是一种新型的适用于深海工程的系泊基础,其极限抗拔力是锚在工程应用中的关键指标。尝试用两种不同的方法评估法向承力锚的极限抗拔力,其一是基于塑性上限分析理论;其二是运用非线性有限元数值方法。与已有的经验公式相比,所建立的计算模型不仅可考虑海床土性质,还能反映锚板定位(嵌入深度及角度)以及系缆力角度对锚极限抗拔力的影响。在与已有评估方法进行比较的基础上,还特别对锚板的嵌入深度、角度以及系缆力角度变化对极限抗拔力的影响规律进行了分析,对三种方法的适用性进行了评述。  相似文献   

11.
The suction anchor has been widely used in taut or semi-taut mooring systems as an effective and economical solution to anchoring problems. To ensure high reliability, the profile of the mooring cable connecting the fairlead and the pad-eye must be accurately designed. However, previous studies have rarely considered the effect of cable slippage in soil on the mooring behavior, or embedded cables have been studied with an assumed tension at the seabed. This paper, by treating the cable suspended in water and the cable embedded in soil as a single cable, presents a two-dimensional (2D) static model and a three-dimensional (3D) quasi-static model for the cable during pretensioning and in service, respectively. The two models take into account the comprehensive effects of ocean currents, soil resistance and cable elasticity, all of which are critical for the design of a mooring system. Three examples are analyzed using the models and some useful conclusions are drawn.  相似文献   

12.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

13.
This paper reports the results from three-dimensional dynamic finite element analysis undertaken to provide insight into the behaviour of the fish and OMNI-max dynamically installed anchors during loading in crust-over-soft clay sediments. Particular attention was focused on the situations where the anchor is embedded to a shallow depth during dynamic installation due to the strong crust layer. Large deformation finite element analyses were carried out using the coupled Eulerian-Lagrangian approach, incoporating the anchor chain effect. Parametric analyses were undertaken varying the initial embedment depth, anchor shape, loading angle, strength ratio between the top and bottom layers. The tracked anchor trajectory confirmed that the diving potential of the fish and OMNI-Max anchors were enhanced by the presence of the crust layer as that somewhat restircted the upward movement. This will be beneficial for many hydrocarbon active regions with layered seabed sediments where the anchor embedment depths during dynamic installation are expected to be low.  相似文献   

14.
Wang  Teng  Hao  Jun-jie  Wu  Xiao-ni  Li  Ye  Wang  Xiao-tong 《中国海洋工程》2021,35(6):841-851

Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system. For a semi-submersible platform with taut mooring system under extreme environmental conditions, the typical mooring system failure includes anchor line breaking failure due to the broken anchor line, and the anchor dragging failure caused by the anchor failure in the seabed soil due to the shortage of the anchor bearing capacity. However, study on the mooring failure caused by anchor failure is rare. The current work investigates the effect of three failure modes of taut mooring system on dynamic response of a semi-submersible platform, including one line breaking failure, two lines breaking failure, and one line breaking with one line attached anchor dragging failure. The nonlinear polynomial mooring line model in AQWA was used with integrating the load and displacement curve from the anchor pulling study to characterize the anchor dragging behavior for mooring system failure caused by the anchor failure. The offsets of the platform and the tension of mooring lines were analyzed for mooring system failure with 100-year return period. It is found that the mooring failure of one line breaking with one line attached anchor dragging is a case between the other two mooring failures. The traditional mooring analysis considering only the damaged condition with one line breaking is not safe enough. And the simple way of mooring analysis of two lines breaking is too conservative for the costly offshore engineering.

  相似文献   

15.
Gravity installed anchors (GIAs) are the most recent generation of anchoring solutions to moor floating facilities for deepwater oil and gas developments. Challenges associated with GIAs include predicting the initial embedment depth and evaluating the keying performance of the anchor. The former involves high soil strain rate due to large anchor penetration velocity, while the later influences the subsequent behavior and pullout capacity of the anchor. With the coupled Eulerian–Lagrangian method, three-dimensional large deformation finite element models are established to investigate the penetration and keying of GIAs in non-homogeneous clay. In the penetration model, a modified Tresca soil model is adopted to allow the effects of soil strain rate and strain softening, and user-defined hydrodynamic drag force and frictional resistance are introduced via concentrated forces. In the keying model, the anchor line effects are incorporated through a chain equation, and the keying, diving and pulling out behaviors of the anchor can all be replicated. Parametric studies are undertaken at first to quantify the effects of various factors on the performance of GIAs, especially on the penetration and keying behaviors. Based on the results of parametric studies, fitted formulae are proposed to give a quick evaluation of the anchor embedment depth after the installation, and the shackle horizontal displacement, shackle embedment loss and anchor inclination at the end of the keying. Comparative studies are also performed to verify the effectiveness of the fitted formulae.  相似文献   

16.
Gravity installed anchors (GIAs) are released from a height of 30–150 m above the seabed, achieving velocities up to 19–35 m/s at the seabed, and embed to depths of 1.0–2.4 times the anchor length. Challenges associated with GIAs include the prediction of anchor initial embedment depth, which determines the holding capacity of the anchor. Based on the coupled Eulerian–Lagrangian approach, a numerical framework is proposed in this paper to predict the embedment depth of GIAs, considering the effects of soil strain rate, soil strain-softening and hydrodynamic drag (modeled using a concentrated force), with the anchor-soil friction described appropriately. GIAs are influenced by the hydrodynamic drag before penetrating into the soil completely, hence the anchor accelerates less than the previous investigations in shallow penetration, even decelerates directly at the terminal impact velocity. The hydrodynamic drag has more influence on OMNI-Max anchors (with an error of ∼4.5%) than torpedo anchors, and the effect becomes more significant with increasing impact velocity. An extensive parametric study is carried out by varying the impact velocity, strain rate and strain-softening parameters, frictional coefficient, and soil undrained shear strength. It is concluded that the dominant factor affecting the penetration is the soil undrained shear strength, then are the impact velocity, strain rate dependency and frictional coefficient, and the minimal is the strain-softening of soil. In addition, although the strain rate dependency is partly compensated by the softening, the anchor embedment depth accounting for the effects of strain rate and strain-softening is lower than that for ideal Tresca soil. Strain rate dependency dominates the combined effects of strain rate and strain-softening in the dynamic installation of GIAs, on which should pay more attention, especially for the calibration of the related parameters and the measured solutions. In the end, the theoretical model based on the bearing resistance method is extended by accounting for the hydrodynamic drag effect.  相似文献   

17.
杜宇  王凯  初岳峰 《海洋工程》2023,41(4):49-58
由于浅水深条件下悬链线系泊系统的性能对系泊缆长度和几何形状更为敏感,悬链线系泊系统的安装误差对其性能的影响较深水条件下的更为显著。因此首先对适用于半潜漂浮式风机的悬链线系泊系统施工进行研究,分别确定了锚安装位置误差、系泊缆预铺误差和系泊缆与漂浮式基础回接误差的来源,并根据施工条件给出了误差值。之后,以浮体动力学仿真作为手段,对系泊缆系统施工误差对其性能的影响进行基于时域仿真的量化研究。研究表明,锚安装位置误差对系泊系统性能影响不大,但系泊缆预铺和回接的误差对系泊系统性能的影响较大。系泊缆回接的误差可造成系泊缆张力平均值和标准差与设计值偏差近20%,可能对系泊系统疲劳寿命评估产生较大的影响。与系泊缆回接误差相比,系泊缆预铺误差的产生原因更为复杂,由于系泊缆预铺误差往往导致系泊缆长度增长,存在误差的系泊缆张力的各项统计值总体偏小,但可能会造成同组无误差系泊缆的张力过载。  相似文献   

18.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

19.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

20.
法向承力锚(VLA)--一种适用于深海工程的新型系泊基础   总被引:2,自引:0,他引:2  
深水系泊基础是深水系泊系统的重要组成,随着海洋油气资源开发的加速发展,深水系泊系统的关键技术成为国际海洋油气资源开发的重要研究领域.法向承力锚(VLA)是一种崭新的适用于深海油气资源开发的系泊基础形式,论文对其应用、性能特点、工作原理、安装与回收以及计算分析方法等进行了全面介绍,以期对科研人员进一步认识深水系泊系统的关键技术有所帮助,并对国内深水系泊系统的研发起到一定的借鉴作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号