首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
T.S. Jang  S.H. Kwon  J.H. Lee 《Ocean Engineering》2010,37(14-15):1337-1344
The purpose of this paper is to identify the functional form of the nonlinear roll damping for a particular ship based on an experiment. The problem of damping identification is formulated as an integral equation of the first kind. However, the solution of the problem lacks stability properties, due to the ill-posedness of the first-kind integral equation. To resolve this problem, a stabilization technique (known as a regularization method) is applied to the present problem of the identification of nonlinear damping. The identified results for nonlinear roll dampings are compared with those from a conventional roll identification method. The findings of the present study are validated by the direct comparison of experimental data on free-roll decay motion with the numerically simulated results.  相似文献   

2.
This paper outlines a procedure for the derivation of the differential equations describing the free response of a heaving and pitching ship from its stationary response to random waves. The coupled heave–pitch motion of a ship in random seas is modelled as a multi-dimensional Markov process. The partial differential equation describing the transition probability density function, known as the Fokker-Planck equation, for this process is derived. The Fokker-Planck equation is used to derive the random decrement equations for the coupled heave–pitch motion. The parameters in these equations are then identified using a neural network approach. The method is validated using numerical simulations and experimental results. The experimental data was obtained using an icebreaker ship model heaving and pitching in random waves. It is shown that the method produces good results when the system is lightly damped. An extension for using this method to identify couple heave–pitch motion in realistic seas is suggested.  相似文献   

3.
This paper aims to investigate the basic interaction characteristics of side-by-side moored vessels both numerically and experimentally. A higher-order boundary element method (HOBEM) combined with generalized mode approach is applied to analysis of motion and drift force of side-by-side moored multiple vessels (LNG FPSO, LNGC and shuttle tankers). Model tests were carried out for the same floating bodies investigated in the numerical study in regular and irregular waves. Global and local motion responses and drift forces of three vessels are compared with those of calculations. Discussions is highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.  相似文献   

4.
CHEN  Xujun 《中国海洋工程》2001,(4):491-498
A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based solutions with experimental results has shown good agreement.  相似文献   

5.
Ships experience roll motion due to waves in a seaway. Therefore, fin stabilizers are installed to stabilize such roll motion. A fin stabilizer is effective at reducing the roll motion at moderate speeds but not at low speeds. Recently, pod propellers have been used with fin stabilizers for roll stabilization. In the paper, a MIMO (multi-input multi-output) optimal control system that has two control inputs such as fin stabilizers and pod propellers is designed. The LQR (linear quadratic regulator) control algorithm is applied to reduce the roll motion of cruise ships in regular waves. Also, the nominal plant and the frequency-weighted LQR are applied to reduce the roll motion in irregular waves. The roll motion of cruise ships is effectively reduced when the fin and pod propeller are used as the control actuators at low speeds. The optimal control gain is easily found when the frequency-weighted LQR is applied.  相似文献   

6.
为研究顺应式海洋平台慢漂运动的影响因素,以截断圆柱和漂浮方箱为例进行了不规则波作用下的慢漂运动模型试验。测量了不同系泊刚度条件下的漂浮方箱以及相同系泊刚度条件下的截断圆柱和漂浮方箱在静水中自由衰减运动和在不规则波中的运动响应,并将运动响应分解成一阶波频运动响应和二阶低频运动响应,分析了系泊刚度和浮体形状对浮体运动的影响。通过物理模型试验发现了系泊刚度及浮体形状对顺应式系泊浮体一阶运动标准差和二阶低频运动平均漂移值和标准差的关系。结果表明由于顺应式浮体的固有周期远离波浪谱峰周期时,系泊刚度以及浮体形状对慢漂运动的一阶运动响应影响不大;二阶低频运动相对偏离平衡位置的平均值和标准差均随系泊刚度增大而减小,浮体形状同样对慢漂运动的二阶低频纵荡运动响应影响较大。试验结果为实际海洋工程的外形选择和系泊刚度选择提供数据支持。  相似文献   

7.
When a fast container ship or a naval vessel turns, accompanying roll motions occur. This roll effect must be considered in the horizontal equations of the motion of the ship to predict the maneuverability of the ship properly. In this paper, a new method for determining a model structure of the hydrodynamic roll moment acting on a ship and for estimating the hydrodynamic coefficients is proposed. The method utilizes a system identification technique with the data from sea trial tests or from free running model (FRM) tests. To obtain motion data that is applied to the proposed algorithm, an FRM of a large container ship was developed. Using this model ship, standard maneuvering tests were carried out on a small body of water out of doors. A hydrodynamic roll moment model was constructed utilizing the data from turning circle tests and a 20-20 zig-zag test. This was then confirmed through a 10-10 zig-zag test. It was concluded that a model structure of the hydrodynamic roll moment model could be established without difficulty through a system identification method and FRM tests.  相似文献   

8.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

9.
Abstract

In this paper, series of experimental studies under regular wave actions to investigate the hydrodynamic performance of the rectangular floating breakwater (FB) affected by reefs with different slopes were carried out in a wave flume. The wave transmission coefficients, motion responses and mooring forces can be calculated on the basis of the data obtained from the experiments. A comparative experiment of the only rectangular FB is also conducted. The experimental results reveal that the rectangular FB with different reefs can make more positive effects on wave energy dissipation than that of the only rectangular FB, especially for short-period waves. The characteristics of three degrees of freedom of the rectangular FB affected by reefs are also observed, which can be used to further explain the variation tendency appeared in transmission coefficients. The roll motion of the FB influenced by reefs is intenser than that of the only FB and the changes of slopes have limited effects on the sway motion of the FB. Furthermore, the heave motion of the only rectangular FB is intenser than that of the FB affected by reefs for short-period waves and vice versa for long-period waves.  相似文献   

10.
In this paper our previously developed advanced system identification technique [1] has been applied to extract the frequency dependent roll damping from a series of model tests run in irregular (random) waves. It is shown that this methodology accurately models the roll damping which can then be used to produce accurate predictions of the ships roll motion. These roll motion predictions are not only more accurate than the potential flow predictions but more accurate than potential flow models corrected using either empirical prediction methods [2] and even those corrected using roll damping obtained from free decay sallying experiments. This methodology has the potential to significantly improve roll motion prediction during full scale at sea trails of vessels in order to dramatically improve safety of critical operations such as helicopter landing or ship to ship cargo transfer.  相似文献   

11.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

12.
The parametric instability of a spar platform in irregular waves is analyzed. Parametric resonance is a phenomenon that may occur when a mechanical system parameter varies over time. When it occurs, a spar platform will have excessive pitch motion and may capsize. Therefore, avoiding parametric resonance is an important design requirement. The traditional methodology includes only a prediction of the Mathieu stability with harmonic excitation in regular waves. However, real sea conditions are irregular, and it has been observed that parametric resonance also occurs in non-harmonic excitations. Thus, it is imperative to predict the parametric resonance of a spar platform in irregular waves. A Hill equation is derived in this work, which can be used to analyze the parametric resonance under multi-frequency excitations. The derived Hill equation for predicting the instability of a spar can include non-harmonic excitation and random phases. The stability charts for multi-frequency excitation in irregular waves are given and compared with that for single frequency excitation in regular waves. Simulations of the pitch dynamic responses are carried out to check the stability. Three-dimensional stability charts with various damping coefficients for irregular waves are also investigated. The results show that the stability property in irregular waves has notable differences compared with that in case of regular waves. In addition, using the Hill equation to obtain the stability chart is an effective method to predict the parametric instability of spar platforms. Moreover, some suggestions for designing spar platforms to avoid parametric resonance are presented, such as increasing the damping coefficient, using an appropriate RAO and increasing the metacentric height.  相似文献   

13.
The total inline wave forces, the irregular wave forces in particular, on an isolated pile are investigated by experiment. The relationships between force coefficients Cd and CM including in Morison's Eq. . and KC number or Reynolds number Re, and the variation of Cd and Cm in frequency domain are analysed with the method of least-squares in time domain and that of cross-spectral analysis. The plots of C4and Cmversus KCare given for both regular and irregular waves and those for irregular waves are used for numerical simulation of the irregular wave forces on the vertical pile and the results are in fairly good agreement with the test data. Based on the experimental results , the applicability of the spectral analysis method for calculating irregular wave forces on an isolated pile is investigated with the coherency γ between wave and wave forces and with KC number.  相似文献   

14.
Wang  Li-yuan  Tang  You-gang  Li  Yan  Zhang  Jing-chen  Liu  Li-qin 《中国海洋工程》2020,34(2):289-298
The paper studies the parametric stochastic roll motion in the random waves. The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed. Random sea surface is treated as a narrow-band stochastic process, and the stochastic parametric excitation is studied based on the effective wave theory. The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function. By using the stochastic averaging method, the differential equation of motion is transformed into Ito's stochastic differential equation. The steady-state probability density function of roll motion is obtained, and the results are validated with the numerical simulation and model test.  相似文献   

15.
半潜浮式风机逐渐在深海风电开发中受到关注,建立风机、平台与系泊结构耦合数值计算模型,通过FAST与AQWA链接进行风机塔基荷载及平台运动响应相互耦合传递,基于随机波与极限波组合模型生成畸形波时程序列,进行半潜浮式风机系泊失效全过程时域模拟计算分析,得出系泊锚链张力、风机、塔筒和平台运动时程响应,探究系泊失效、风机停机和叶片变桨速率对浮式风机平台系泊结构动力响应的影响。结果表明:畸形波作用下浮式平台和系泊结构动力响应显著,系泊失效导致塔基剪力增加,平台纵荡和纵摇运动响应显著增大;风机停机会引起系泊锚链张力显著减小,转子推力、塔基剪力和叶尖挥舞位移响应逐渐衰减,平台纵荡、纵摇和横摇运动响应显著减小;随着叶片变桨速率增加,风机转子推力和塔基剪力波动幅值增大。  相似文献   

16.
贺铭  任冰  邱大洪 《海洋工程》2016,(3):421-430
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   

17.
A modified Boussinesq-type model is derived to account for the propagation of either regular or irregular waves in two horizontal dimensions. An improvement of the dispersion and shoaling characteristics of the model is obtained by optimizing the coefficients of each term in the momentum equation, expanding in this way its applicability in very deep waters and thus overcoming a shortcoming of most models of the same type. The values of the coefficients are obtained by an inverse method in such a way as to satisfy exactly the dispersion relation in terms of both first and second-order analyses matching in parallel the associated shoaling gradient. Furthermore a physically more sound way to approach the evaluation of wave number in irregular wave fields is proposed. A modification of the wave generator boundary condition is also introduced in order to correctly simulate the phase celerity of each input wave component. The modified model is applied to simulate the propagation of breaking and non-breaking, regular and irregular, long and short crested waves in both one and two horizontal dimensions, in a variety of bottom profiles, such as of constant depth, mild slope, and in the presence of submerged obstacles. The simulations are compared with experimental data and analytical results, indicating very good agreement in most cases.  相似文献   

18.
A method to compute wave- and current-induced viscous drift forces and moments on floating platforms in regular and random waves is presented. The relative velocity drag term of Morison's equation is used in conjunction with frequency domain first-order motion transfer functions to compute the drift forces and moments. Mean viscous drift forces and moments in regular waves in all six degrees-of-freedom of a tension leg platform are computed. The relative importance of the free-surface force integration, steady current, wave-current interaction and platform motions on the computed drift forces and moments are discussed. The results from this method, in the frequency domain, are used to compute the drift forces and responses in irregular waves using existing methods developed for potential drift computations. Comparisons with results from time-domain computations are also presented and good agreement between the frequency-domain and time-domain results is found. Some comparisons with experimental data are also made. The frequency-domain method is found to be an efficient and useful tool for the analysis of semi-submersible and tension leg platforms during the preliminary design stage in which extensive parametric studies need to be undertaken.  相似文献   

19.
20.
For a large floating structure in waves, the damping is computed by the linear diffraction/radiation theory. For most degrees of freedom, this radiation damping is adequate for an accurate prediction of the rigid body motions of the structure at the wave frequencies. This is not particularly true for the roll motion of a long floating structure. For ships, barges and similar long offshore structures, the roll damping is highly nonlinear. In these cases the radiation damping is generally quite small compared to the total damping in the system. Moreover, the dynamic amplification in roll may be large for such structures since the roll natural period generally falls within the frequency range of a typical wave energy spectrum experienced by them. Therefore, it is of utmost importance that a good estimate of the roll damping is made for such structures. The actual prediction of roll damping is a difficult analytical task. The nonlinear components of roll damping are determined from model and full scale experiments. This paper examines the roll damping components and their empirical contributions. These empirical expressions should help the designer of such floating structures. The numerical values of roll damping components of typical ships and barges in waves and current (or forward speed) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号