首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rigid-body slamming has become increasingly important as ships travel at higher speeds experiencing larger loads during hull impacts against surface water which can result in structural damage and crew injury. It is necessary to characterise the hydrodynamic loading during water impacts.We present a series of experiments conducted in order to study slamming force events seen by flat plates during free surface impacts. The experiments focus on the characterisation of the loads experienced by flat plates during the first phase of the slamming event, the water entry. They have been conducted in an especially designed test apparatus, the Slingshot Impact Testing System (SITS), which allows us launching objects against the free surface of an open channel, with the possibility of setting up different speeds and deadrise angles. We can study slamming with trapped air between the plate and the water free surface, at high impact speeds and small deadrise angles, allowing us to quantify the resulting cushioning effect. High velocity impacts up to 5 m/s were conducted at angles between 0.3° and 25°. It was found that the trapped air phenomenon significantly cushions flat plate impacts with angles less than 5° and impacts with larger angles adhere to Von Kármán's equations.  相似文献   

2.
Dobrovol'skaya [1] presented a similarity solution for the water entry of symmetrical wedges with constant velocity. The solution involves an integral equation that becomes increasingly harder to numerically solve as the deadrise angle decreases. Zhao and Faltinsen [2] were able to present reliable results for deadrise angles down to 4°. In this paper, Zhao and Faltinsen's results are improved and reliable results for deadrise angles down to 1° are confirmed by comparing to the asymptotic solutions at small deadrise angles and the solutions by the traditional boundary element method at relatively large deadrise angles. The present similarity solution results provide a reference solution in theoretical studies of water entry problems and in developing accurate numerical solvers for simulating strongly nonlinear wave–body interactions, which flows are governed by Laplace equation or Euler equation.  相似文献   

3.
In this paper, theoretical models are developed and numerical methods are used to analyze the loads, motions and cavity dynamics for freefall wedges with different deadrise angles vertically entering the water surface at Froude numbers: 1  Fn < 9. The time evolutions of the penetration depth, the velocity and the acceleration are analyzed and expressed explicitly. The maximum and average accelerations are predicted. The theoretical results are compared with numerical data obtained through a single-fluid BEM model with globally satisfactory agreement. The evolution of the pressures on the impact side is investigated. Before flow separation, gravity and the acceleration of the wedge have negligible influence on the pressure on the impact side for large Froude numbers or small deadrise angles; with increasing the deadrise angle or decreasing Froude number, the effects of gravity and the acceleration of the wedge tend to become more important. Global loads, with the main emphasis on the drag coefficient, are also studied. It is found that for the light wedge, the transient drag coefficient has slow variation in the first half of the collapse stage and rapid variation in the last half of the collapse stage. For the heavy wedge, the transient drag coefficients vary slowly during the whole collapse stage and can be treated as constant. The characteristics of the transient cavity during its formation are investigated. The non-dimensional pinch-off time, pinch-off depth and submergence depth at pinch-off scale roughly linearly as the Froude number.  相似文献   

4.
Experimental studies were carried out to investigate the response features of an inclined flexible bare cylinder as well as a straked cylinder in a towing tank, with the main purpose of further improving the understanding of the effect of yaw angle on vortex-induced vibration (VIV) suppression. Four yaw angles (a = 0°, 15°, 30°, 45°), which is defined as the angle between the cylinder axis and the plane orthogonal to the oncoming fluid flow, were tested. The cylinder model was towed along the tank to generate a uniform fluid flow. The towing velocity was in the range of 0.05–1.0 m/s with an interval of 0.05 m/s. The corresponding Reynolds number ranged from 800 to 16000. The strakes selected for the experiments had a pitch of 17.5D and a height of 0.25D, which is generally considered as the most effective configuration for VIV suppression of a flexible cylinder in water. The experimental results indicate that VIV suppression effectiveness of the inclined flexible straked cylinder is closely related to the yaw angle. The displacement amplitudes are significantly suppressed in both cross-flow (CF) and in-line (IL) directions at a = 0°. However, with increasing yaw angle, the suppression efficiencies of the CF and IL displacement amplitudes gradually decrease. In addition, the CF dominant frequencies of the straked cylinder obviously deviate from those of the bare cylinder at a = 0° and 15°. This deviation is substantially alleviated with increasing yaw angle. The IL dominant frequencies show less dependency on the yaw angle. Similar trends are also observed on the dominant modes of vibration and the mean drag coefficients.  相似文献   

5.
The interaction between waves and artificial reefs (ARs; a hollow cube weighing 8.24 kN (0.84 t) and a water pipe weighing 1.27 kN (0.13 t)) in shallow waters was investigated with respect to variations in design weight, orientation (for cube; 45° and 90° angles, for pipe; 0°, 90°, and 180° angles to flow), depth (1–20 m), and bottom slope (10?1, 30?1, and 50?1). Physics equations and FLUENT software were used to estimate resisting and mobilising forces, and drag coefficients. Drag coefficients for the hollow cube were 0.76 and 0.85 at 45° and 90° angles to the current, respectively, and 0.97, 0.38, and 1.42 for the water pipe at 0°, 90°, and 180° angles to the current, respectively. Deepwater offshore wave conditions at six stations were transformed into shallow nearshore waters representative of the artificial reef site. Waters deeper than 12 and 16 m are safe to deploy blocks with angles of 45° and 90°, respectively. However, water pipes constructed at angles of 90° and 180° to the current were estimated as being unstable for 365 out of 720 cases at all stations (only one station was stable for all cases). Water pipes angled at 0° were found to be stable in all 360 cases. Slope had a significant effect on weight and depth. Results from this study provide an important reference for engineers performing projects aiming to increase the performance and service life of ARs.  相似文献   

6.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

7.
This paper examines the results of physical model studies conducted in a monochromatic wave flume, to evaluate the wave transmission characteristics of a submerged plate breakwater consisting of a fixed plate of 0.50 m length and 0.003 m thickness. The model was oriented at varying inclinations and submergence. The influence of wave steepness, relative depth, relative submergence and angle of inclination on wave transmission was analysed. It was found that the horizontal plate is effective for short waves with steepness parameter higher than 5×10?3 in relative depth grater than 0.21. The plate oriented at an angle of inclination of 60° is found to be effective for the entire ranges of wave parameters considered for the study and it reduces the wave height by about 40%.  相似文献   

8.
The validity of the independence principle applied to the vortex-induced vibration (VIV) of an inclined cylinder in steady flow is investigated by conducting numerical simulations. In order to create a perfect end-effect-free condition, periodic boundary condition is applied on the two end boundaries that are perpendicular to the cylinder. It is found that the response amplitude and frequency for an inclination angle of α = 45° agree well with their counterparts for α = 0°. The numerical results demonstrated the validity of the independence principle in the case of vortex-induced vibration, which has not been demonstrated by laboratory tests due to the difficulty in avoiding the end effects.  相似文献   

9.
Deformable bodies entering the water can face unexpected fluid–structure interaction (FSI) phenomena introduced by the mutual interaction between the fluid motion and the structural deformations. This brief communication presents some preliminary results on the FSI phenomena involved with the water entry of deformable wedges. Wedges with various deadrise angle and flexibility impact the water at different velocities. Two different kinds of FSI are found: (i) a repetition of impacts and separations in the fluid jet and (ii) a tendency to cavitation in the underwater fluid–structure interface. These experimental findings are important since large deformations are found to introduce clearly visible FSI phenomena commonly neglected or ignored, but crucial to correctly predict the hydrodynamic load.  相似文献   

10.
A boundary element method is developed for calculating the flare ship hull slammingproblem.The nonlinear free surface elevation and the linear element assumption are employed.The meth-od has been verified by comparisons with results for the water entry of wedges with various deadriseangles.Numerical results show that the pressure distribution varies greatly with the ship hull with differentcurvilinear equations,and the slamming features are also different.From the numerical simulation,the au-thors found that the structural damage of the flare hull might be caused by the increasing hydrodynamicpressure over an extensive area on the flare when the upper part of the flare comes into contact with water.  相似文献   

11.
Mytilopsis leucophaeata, an invasive bivalve species, causes fouling problems by settling on submerged constructions and in cooling water circuits in brackish water. To predict spat fall we studied the larval occurrence and settlement of this species in the brackish Noordzeekanaal canal in the Netherlands for several years (1989–1992), while measuring water temperature, salinity and chlorophyll a levels. Larvae were collected monthly by means of a plankton net drawn across the whole width of the canal. Settled spat were collected from PVC panels exposed for one month. Larvae first appeared in May or June, and reached maximum numbers in June or July, before disappearing in October, November or even December. The larval period started at a water temperature of 14 °C, reached maximum numbers at 19–23 °C and ended when it fell below 9 °C. No larvae were observed anymore until the temperature rose to 14 °C in the spring of the next year. Spat fall (June–November) was related to the water temperature in April. If the water temperature in April was lower than 12.5 °C, spat fall started in July, while if temperature was already higher in April, it started a month earlier. The spat fall period started at 15 °C, with maximum numbers at 20–24 °C, and ended when the water temperature dropped below 5 °C. Redundancy analysis (RDA) demonstrated a strong relationship between larval and spat densities and water temperature.  相似文献   

12.
The effects of tropical instability waves (TIW) within the eastern equatorial Pacific during the boreal fall of 2005 were observed in multiple data sets. The TIW cause oscillations of the sea surface temperature (SST), meridional currents (V), and 20 °C isotherm (thermocline). A particularly strong 3-wave packet of ~15-day period TIW passed through the Galápagos Archipelago in Sep and Oct 2005 and their effects were recorded by moored near-surface sensors. Repeat Argo profiles in the archipelago showed that the large temperature (>5 °C) oscillations that occurred were associated with a vertical adjustment within the water column. Numerical simulations report strong oscillations and upwelling magnitudes of ~5.0 m d?1 near the Tropical Atmosphere Ocean (TAO) buoy at 0°, 95°W and in the Archipelago at 92°W and 90°W. A significant biological response to the TIW passage was observed within the archipelago. Chlorophyll a measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) increased by >30% above 1998–2007 mean concentrations within the central archipelago. The increases coincide with coldest temperatures and the much larger increases within the archipelago as compared to those of 95°W indicate that TIW induced upwelling over the island platform itself brought more iron-enriched upwelling waters into the euphotic zone.  相似文献   

13.
The Antarctic Peninsula is currently considered as one of the fastest changing regions on Earth yet temperature variability in some of its environments and habitats is not well-documented. Given the increased glacier retreat, summer melts, sea level rise and ozone losses the intertidal zone is likely to be one of the most rapidly altering of environments but also one of the least investigated in polar waters. This study aims to quantify summer temperature variability in some habitats of the intertidal zone at King George Island. Three transects were selected across tidal flat. Four temperature loggers were deployed at each of them from extreme low water spring tide level to extreme high water spring tide level between 07.12.2010 and 18.03.2011. All the loggers were deployed at the rocky substratum. The temperature range across the study tidal flat was between − 2.26 °C and + 21.18 °C. The average (summer) temperature obtained from 12 loggers varied from + 1.89 to + 3.26 °C. In all the three transects average temperature increased with tidal height. Much higher temperature variability was recorded at higher than at lower tide locations. Differences in temperature between the three study transects existed. Results obtained from the studied tidal flat show that several factors combined altogether, including: water movement by tidal forces, wave action, air temperature, sun light intensity, shore lithology and the presence of ice and snow in the area, seem to influence its temperature.  相似文献   

14.
Laminar flow past a circular cylinder with 3 small control rods is investigated by numerical simulation. This study is concerned with the suppression efficacy of vortex induced vibration by small control rods located around a main cylinder. The effects of the attack angle and rod-to-cylinder gap ratio on the hydrodynamics and vibration responses of the main cylinder are investigated. The attack angle of α = 45° is performed as the critical angle for VIV suppression of 3 control rods. The 3 control rods have no effect on VIV suppression when the attack angle is less than the critical angle. The 3 control rods have an excellent VIV suppression efficacy when the attack angle is larger than the critical angle. The transverse vibration frequency of the cylinder with 3 control rods is less than that for an isolated cylinder for all the configurations. The numerical results for the configurations of α = 45° & 60°, G/D = 0.6–1.2 show excellent suppression efficient among the cases investigated in this study. The best suppression efficient is found at α = 45°, G/D = 0.9 for 3 control rods. 2 rods in behind of the main cylinder perform more efficient than that of 1 rod in front for VIV suppression as the gap ratio of G/D less than 1.0.  相似文献   

15.
The forced constant acceleration exit of two-dimensional bodies through a free-surface is computed for various 2D bodies (symmetric wedges, asymmetric wedges, truncated wedges and boxes). The calculations are based on the fully non-linear time-stepping complex-variable method of Vinje and Brevig (1981). The model was formulated as an initial boundary-value problem (IBVP) with boundary conditions specified on the boundaries (dynamic and kinematic free-surface boundary conditions) and initial conditions at time zero (initial velocity and position of the body and free-surface particles). The formulated problem was solved by means of a boundary-element method using collocation points on the boundary of the domain and stepped forward in time using Runge–Kutta and Hamming predictor–corrector methods. Numerical results for the deformed free-surface profile, pressure along the wetted region of the bodies and force experienced by the bodies are given for the exit. The analytical added-mass force is presented for the exit of symmetric wedges and boxes with constant acceleration using conformal mappings. To verify the numerical results, the added-mass force and the numerical force are compared and give good agreement for the exit of a symmetric wedge at a time zero (t = 0) as expected but only moderate agreement for the box.  相似文献   

16.
Although a great amount of information is available on bacteria inhabiting deep-sea sediments, the occurrence of fungi in this environment has been poorly studied and documented. We report here the occurrence of fungi in deep-sea sediments from ∼5000 m depth in the Central Indian Basin (9–16°S and 73–76°E). A total of 181 cultures of fungi, most of which belong to terrestrial sporulating species, were isolated by a variety of isolation techniques. Species of Aspergillus and non-sporulating fungi were the most common. Several yeasts were also isolated. Maximum species diversity was observed in 0–2 cm sections of the sediment cores. Direct staining of the sediments with Calcofluor, a fluorescent optical brightener, revealed the presence of fungal hyphae in the sediments. Immunofluorescence using polyclonal antibodies raised against a deep-sea isolate of Aspergillus terreus (# A 4634) confirmed its presence in the form of hyphae in the sub-section from which it was isolated. A total of 25 representative species of fungi produced substantial biomass at 200 bar pressure at 30° as well as at 5 °C. Many fungi showed abnormal morphology at 200 bar/5 °C. A comparison of terrestrial isolates with several deep-sea isolates indicated that the former could grow at 200 bar pressure when growth was initiated with mycelial inocula. However, spores of a deep-sea isolate A. terreus (# A 4634), but not the terrestrial ones, showed germination at 200 bar pressure and 30 °C. Our results suggest that terrestrial species of fungi transported to the deep sea are initially stressed but may gradually adapt themselves for growth under these conditions.  相似文献   

17.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

18.
Temperature and depth logging tags were implanted into adult eels released on Atlantic west coasts of France and Ireland to study their oceanic migration behavior. For three of the tags, 25 to 256 days after release there was a dramatic rise in temperature from 10 °C to 36 °C and the dive profile changed from depths of 300–1000 m to repeated ascents to the surface. This indicated that the eels carrying the tags had been eaten by a mammalian predator. Two of the tags had sufficient sampling rate to resolve the dives in detail. They recorded a total of 91 dives to maximum depths of 250–860 m lasting 11–12 min and with surface intervals of 5–7 min. More than two thirds of the dives included a rapid descent from approximately 500 m to 600–700 m. From this we infer that the predator was most likely a deep-diving toothed whale. The dives logged while the tags were inside the predator revealed that the temperature usually decreased during dives, and increased again during surface periods. The temperature drops during dives were probably caused by the ingestion of prey or water. These observations provide insights into the behavior of toothed whales foraging in the mesopelagic zone.  相似文献   

19.
The results of an elaborate experimental investigation on bottom slamming of axisymmetric objects are presented. Drop tests have been performed on a hemisphere and two conical shapes with different deadrise angles. The test setup is designed so as to prevent small rotations of the test objects which cause scatter in the measurement data. The pressure distribution and evolution as well as the body motion parameters are measured during impact. By means of a high speed camera the water uprise is visualized and the wetting factor is determined for the cones. The results are compared with a three-dimensional asymptotic theory for axisymmetric rigid bodies with constant entry velocity. The ratio between the registered peak pressures and the asymptotic theory are in accordance with comparable experiments in the literature. The asymptotic theory, however, is found to be quite conservative, since the measured peak pressure levels appear to be approximately 50% to 75% of the theoretical levels.  相似文献   

20.
As part of the evaluation of the environmental impact of sequestering carbon dioxide in the deep ocean, we exposed the sediment-dwelling fauna at a station in Monterey Submarine Canyon (36.378°N, 122.676°W, 3262 m) to carbon dioxide-rich seawater and found that most of the harpacticoid copepods were killed. In an expanded, follow-on experiment on the continental rise nearby (36.709°N, 123.523°W, 3607 m), not only did harpacticoids survive exposure to carbon dioxide-rich seawater, but we found no evidence from seven additional metrics that the harpacticoids had been affected. We infer that during the second experiment the harpacticoids were not exposed to a stressful dose. During the second experiment, carbon dioxide-rich seawater appears to have been produced more slowly than in the first, probably because of differences in the near-bottom flow regimes. We conclude that local physical circumstances can substantially influence the results of experiments of this type and will complicate the evaluation of the environmental consequences of deep-ocean carbon dioxide sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号