首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

2.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

3.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

4.
Drag anchor is a widely used economical anchor option for offshore floating structures. The anchor behavior under unidirectional loading and combined loading is important for anchor selection. The anchor behavior under combined loading, characterized by the yield envelope, can also be used for the prediction of anchor installation, which is still an issue in anchor design. However, most existing studies on anchor capacity are for plate anchors which focused only on the anchor pullout capacity in soil with uniform shear strength. The behavior of drag anchor under unidirectional and combined loading in soil with linearly increasing shear strength profile is seldom investigated. The current 2D finite element studies investigate the anchor behavior for a horizontal anchor fluke in clay with linearly increasing shear strength under unidirectional vertical, horizontal and rotational loadings first. Then based on the results of anchor unidirectional loading behavior, the yield envelopes for anchor under combined loading for both shallow and deep embedded flukes are studied. The effect of anchor embedment depth, soil non- homogeneity, soil overburden pressure and the soil/anchor interface breakaway conditions are studied to provide insight for drag anchor design.  相似文献   

5.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

6.
Anchors in sand bed: delineation of rupture surface   总被引:4,自引:0,他引:4  
Anchors of very large uplift capacities are required to support offshore structures at great water depths. The capacities of plate and mushroom type anchors are generally estimated based on the shape of rupture surface. An attempt has been made in the present investigation to delineate the rupture surfaces of anchors embedded in submerged and dry sand beds at various depths. The results exhibited two different modes of failure depending on the embedment ratio, namely, shallow and deep anchor behaviour. The load–displacement curves exhibited three- and two-phase behaviours for shallow and deep anchors, respectively. Negative pore water pressures recorded in submerged sand also exhibited variation similar to that of pullout load versus anchor displacement.  相似文献   

7.
Abstract

In the field of ocean engineering, anchors are used for several purposes. This article studies the behavior of a helical anchor embedded in soft marine clay under vertical repetitive loading. Helical anchors are simple steel shafts to which one or more helical plates are attached at regular intervals. The tests are conducted on a model helical anchor installed in a soft marine clay bed prepared in a test tank. Repetitive loading is applied using a pneumatic loading arrangement. Different cyclic load ratios and time periods are adopted. In each test, after the application of repetitive loading, poststatic‐pullout tests are conducted to observe the effect of repetitive loading on anchor behavior. From the test results, it is found that, up to a cyclic load ratio of 55%, there is no reduction in capacity. Instead, there seems to be a marginal increase in capacity and reduction in displacement. The reasons for this behavior are explained in terms of induced changes in strength and deformation behavior of marine clay under repetitive load. However, at higher cyclic load ratios, there seems to be reduction in pullout capacity of the anchor, and the reason for this is explained in terms of strain criteria. From this investigation, it can be concluded that the deep anchor is more suitable to a marine environment than a shallow anchor.  相似文献   

8.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

9.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

10.
To study the feasibility and efficiency of underwater suction anchors in soil, the performance of eight model anchors was evaluated in a 30 in. (76·2 cm) by 72 in. (183·0 cm) by 32 in. (81·3 cm) deep test tank. The soil studied were a medium fine sand, a silt and a clay. A gantry-type loading mechanisms was used to apply the vertical breakout force. A pullout rate of approximately 0·1 in/min (0·25 cm/min) was used for all tests.For the range of conditions studied, the test results indicate that the underwater suction anchor is feasible and effective. The breakout behavior of the suction anchors depends upon the anchor geometry including anchor diameter and skirt length, soil strength properties, soil-anchor friction and adhesion, and suction; i.e. the difference between the pressure underneath the porous plate and the ambient pressure. For the anchors and soils tested, the anchor capacity increases linearly with increasing suction provided the anchor skirt length to diameter ratio remains constant. An increase in the anchor capacity results with increasing suction and with increasing internal friction angle of the test soils. To study the results suggest that the underwater suction anchor is particularly useful for short-term anchorage.  相似文献   

11.
Numerical solutions have been obtained for the vertical uplift capacity of strip plate anchors embedded adjacent to sloping ground in fully cohesive soil under undrained condition. The analysis was performed using finite element lower bound limit analysis with second-order conic optimization technique. The effect of anchor edge distance from the crest of slope, angle and height of slope, normalized overburden pressure due to soil self-weight, and embedded depth of anchor on the uplift capacity has been examined. A nondimensional uplift factor defined as F owing to the combined contribution of soil cohesion (cu), and soil unit weight (γ) is used for expressing the uplift capacity. For an anchor buried near to a sloping ground, the ultimate uplift capacity is dependent on either pullout failure of anchor or overall slope failure. The magnitude of F has been found to increase with an increase in the normalized overburden pressure up to a certain maximum value, beyond which either the behavior of anchor transfers from shallow to deep anchor or overall slope failure occurs.  相似文献   

12.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

13.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and significantly affected by the anchor line. Based on the coupled Eulerian–Lagrangian (CEL) method, a numerical approach incorporating anchor line effects is developed to investigate comprehensive anchor behaviors in the soil, including penetration of drag anchors, keying of suction embedded plate anchors and diving of gravity installed anchors. Compared to the method directly incorporating the anchor line into the CEL analysis, the proposed method is computationally efficient. To examine the robustness and accuracy of the proposed method, numerical probe tests and then comparative studies are carried out. It is found that the penetration (or diving) and keying behaviors of anchors can be well simulated. A parametric study is also undertaken to quantify the effects of various factors on the behavior of OMNI-Max anchors, whose mechanisms are not yet fully understood. The maximum embedment loss of OMNI-Max anchors during keying is not influenced by the initial anchor embedment depth, whereas significantly increases with increasing drag angle at the embedment point. With decreasing initial anchor embedment depth or increasing soil strength gradient, drag angle at the embedment point and diameter of the anchor line, the behavior of OMNI-Max anchors could change from diving to pullout, which is undesirable in offshore engineering practice. If the drag angle increases over a certain limit, the anchor will fail similar to a suction anchor.  相似文献   

14.
In the field of ocean engineering, a beginning has been made in the use of large‐sized suction anchors for safe anchoring of large compliant structures. Suction anchors derive most of their uplift resistance from passive suction developed during the pullout movement. This article describes a set of laboratory tests on model suction anchors of three different embedment ratios to estimate the pullout behavior of suction anchors in soft clays typical of Indian marine clays. Tests were conducted on model anchors installed in soil beds prepared at four different consistencies in a test tank. This study shows the influence of soil consistency and embedment ratio (L/D) on the pullout behavior of suction anchors and on the variation of suction pressure at the top of the soil plug. The test results reveal that the behavior of suction anchors is much better than the behavior of open‐ended anchors from the considerations of both capacity and deformation. The consistent development of suction inside the anchor top confirms the plug formation and significant breakout resistance in the form of suction‐induced reversed end bearing. The results are further analyzed in terms of suction breakout factors. Further, the effect of burial depth of suction anchor on pullout behavior is shown.  相似文献   

15.
As ocean operations have expanded and moved into deeper waters the need for development of high capacity, reliable anchors for long term moorings has emerged. The advantages of embedded anchors are demonstrated but the ‘cyclic creep’ phenomenon is highlighted as potentially damaging to their long term behaviour. A small scale device to prevent cyclic creep is described (AECC system) and the behaviour of an anchor incorporating this device compared to a conventional embedded anchor. Response to both static and repeated loading is presented and the deleterious effect of repeated loading on the life of the system, particularly when installed by soil disturbing procedures, emphasized. It is shown that the use of the AECC device will provide considerable improvements in anchor life. In addition, it is clear that the use of static loading test results in order to demonstrate the general suitability of an embedded anchor is misleading and bears little relationship to subsequent long term response. Finally, proposals are made regarding the incorporation of the AECC device into existing large scale anchors and it is considered that this will result in substantial improvements in behaviour.  相似文献   

16.
Gravity installed anchors (GIAs) are the most recent generation of anchoring solutions to moor floating facilities for deepwater oil and gas developments. Challenges associated with GIAs include predicting the initial embedment depth and evaluating the keying performance of the anchor. The former involves high soil strain rate due to large anchor penetration velocity, while the later influences the subsequent behavior and pullout capacity of the anchor. With the coupled Eulerian–Lagrangian method, three-dimensional large deformation finite element models are established to investigate the penetration and keying of GIAs in non-homogeneous clay. In the penetration model, a modified Tresca soil model is adopted to allow the effects of soil strain rate and strain softening, and user-defined hydrodynamic drag force and frictional resistance are introduced via concentrated forces. In the keying model, the anchor line effects are incorporated through a chain equation, and the keying, diving and pulling out behaviors of the anchor can all be replicated. Parametric studies are undertaken at first to quantify the effects of various factors on the performance of GIAs, especially on the penetration and keying behaviors. Based on the results of parametric studies, fitted formulae are proposed to give a quick evaluation of the anchor embedment depth after the installation, and the shackle horizontal displacement, shackle embedment loss and anchor inclination at the end of the keying. Comparative studies are also performed to verify the effectiveness of the fitted formulae.  相似文献   

17.
拖曳锚由于其承载性能和深水中便于安装被广泛应用于海洋工程系泊系统中,如:适用于悬链式系泊系统的传统拖曳锚和适用于绷紧式系泊系统的法向承力锚。拖曳锚安装过程中涉及诸多运动特性:锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹。基于大变形有限元分析技术耦合的欧拉-拉格朗日法,并引入缆绳方程,建立起锚-缆绳-海床土耦合作用的有限元分析模型;模拟了拖曳锚在均质和线性强度黏土中的嵌入安装过程,研究了锚板运动方向、系缆点处拖曳力和拖曳角及运动轨迹等运动特性;通过与已有的有限元分析方法及理论方法进行对比,验证了该分析模型的有效性;与已有的有限元分析方法相比,提出的分析模型有效地提高了计算效率。  相似文献   

18.
Three centrifuge model tests were performed in normally consolidated Speswhite Kaolin to study the penetration of suction anchors in soft clay. The suction anchors could be penetrated by means of underpressure to a depth of about 12.4 to a little more than 14.5 times the diameter. When the anchors were penetrated by underpressure, all clay displaced by the skirt moved into the anchor. At a penetration depth of about half the maximum penetration depth, the volume of the soil heave inside the anchor actually increased more than the volume of the displaced clay. When a material coefficient of 1.5 against plug failure was mobilized, more than the clay displaced by the skirts had accumulated inside the anchor. The penetration resistance increased by 42 and 26% during rest periods of 4.5 and 0.8 days prototype time, respectively. Some uncertainty in the shear strength of the clay beds gave some uncertainty with respect to the interpretation, but the observed behaviour generally confirmed the theoretical analyses.  相似文献   

19.
K.D. Jones  Y. Cho 《Ocean Engineering》2007,34(16):2107-2114
An analytical solution has been developed to estimate the horizontal, vertical, and inclined loading pullout capacities of embedded suction anchors in sand. Validation of the analytical solution on pullout capacities has been made through comparisons with the centrifuge model test results. Primary variables for the centrifuge model tests are the depth to the loading point, the load inclination angle, and the addition of flanges. The results indicate that both the horizontal and vertical pullout capacities of the embedded suction anchor in sand increase, reach the peak and then start to decrease as the loading point moves downward. The inclined loading pullout capacity is very much dependent on the load inclination angle and the loading point. The effect of flanges on the pullout capacities is also found to be significant.  相似文献   

20.
韩聪聪  刘君 《海洋工程》2016,34(5):92-100
板翼动力锚是依靠自重完成安装并靠自重和海床土的抗力来锚固的新型动力锚。板翼动力锚高速(15~25 m/s)贯入地基过程中涉及到高应变率、流固耦合、土体软化和大变形等难题,模型试验可避免上述计算困难,能直接得出不同的贯入速度所对应的沉贯深度。本文首先推导了模型相似关系,然后在常规重力条件下,进行了两组26个工况的板翼动力锚在均质黏土中动力安装过程的模型试验,根据试验结果确定了率效应参数的取值范围,并研究了每一项受力对沉贯深度的影响。最后提出了在均质黏土中预测板翼动力锚沉贯深度的经验公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号