首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
The quantitative properties and circulation of the lower layer of circumpolar water in the Scotia Sea with density 28.16 < γ n < 28.26 (potential temperature 0.9° > θ > 0.2°C) are investigated using the original procedure for determination of boundaries between water masses. The primary objective of this work is data analyses of four Russian sections, which were occupied in the vicinity of the Shackleton Fracture Zone in 2003, 2005, and 2007. It is shown that the ridges in the Hero and Shackleton fracture zones essentially constrain overflow of the lower layer of circumpolar water, and thereby, they produce the conditions to the east of the Shackleton Ridge for transformation (freshening and warming) of this layer reaching the northern side of the Antarctic Circumpolar Current. These ridges also promote formation of several quasi-permanent and semi-enclosed abyssal and deep-water eddies adjacent to these ridges. The estimation of overflow of the lower part of the investigated layer with density 28.23 < γ n < 28.26 (0.9° > θ > 0.2°C) through the Shackleton Ridge based on LADCP measurements in 2007 is 0.5 Sv (0.1 Sv) to the east (west). The upper part of the overflow is estimated as 8.0 (7.9) Sv. Thus, the total transport of the lower layer of circumpolar water through the ridge is practically zero. It is confirmed by LADCP measurements carried out on the section across the Drake Passage in 2003.  相似文献   

2.
An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance.Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. A more saline WSDW variety from the South Sandwich Trench may leak into the eastern Scotia Sea through Georgia Passage, but mainly flows around the Northeast Georgia Rise to the northern Georgia Basin.In Drake Passage, the inflowing CDW displays a previously unreported bimodal property distribution, with CDW at the Subantarctic Front receiving a contribution of deep water from the subtropical Pacific. This bimodality is eroded away in the Scotia Sea by vigorous mixing with WSDW and CDW from the Weddell Gyre. The extent of ventilation follows a zonation that can be related to the CDW pathways and the frontal anatomy of the ACC. Between the Southern Boundary of the ACC and the Southern ACC Front, CDW cools by 0.15°C and freshens by 0.015 along isopycnals. The body of CDW in the region of the Polar Front splits after overflowing the North Scotia Ridge, with a fraction following the front south of the Falkland Plateau and another spilling over the plateau near 49.5°W. Its cooling (by 0.07°C) and freshening (by 0.008) in crossing the Scotia Sea is counteracted locally by NADW entraining southward near the Maurice Ewing Bank. CDW also overflows the North Scotia Ridge by following the Subantarctic Front through a passage just east of Burdwood Bank, and spills over the Falkland Plateau near 53°W with decreased potential temperature (by 0.03°C) and salinity (by 0.004). As a result of ventilation by Weddell Sea waters, the signature of the Southeast Pacific Deep Water (SPDW) fraction of CDW is largely erased in the Scotia Sea. A modified form of SPDW is detected escaping the sea via two distinct routes only: following the Southern ACC Front through Georgia Passage; and skirting the eastern end of the Falkland Plateau after flowing through Shag Rocks Passage.  相似文献   

3.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

4.
It has long been seen from satellite ocean color data that strong zonal gradients of phytoplankton biomass persistently occur in the southern Drake Passage during austral summer and fall, where the low productivity Antarctic Surface Water (ASW) within the Antarctic Circumpolar Current (ACC) region transforms to the high productivity water. An interdisciplinary cruise was conducted in February and March 2004 to investigate potential physical and biogeochemical processes, which are responsible for transporting nutrients and metals and for enhancing primary production. To explore physical processes at both the meso- and large-scales, surface drifters, a shipboard Acoustic Doppler Current Profiler and conductivity–temperature–depth sensors were used. Analyzing meso- and large-scale hydrography, circulation and eddy activities, it is shown that the topographic rise of the Shackleton Transverse Ridge plays the key role in steering an ACC branch southward west of the ridge, forming an eastward ACC jet through the gap between the ridge and Elephant Island and causing the offshelf transport of shelf waters approximately 1.2 Sv from the shelf near Elephant Island. High mesoscale eddy activities associated with this ACC southern branch and shelf waters transported off the shelf were found. The mixing between the iron-poor warmer ASW of the ACC and iron-rich waters on the shelf through horizontal transport and vertical upwelling processes provides a physical process which could be responsible for the enhanced primary productivity in this region and the southern Scotia Sea.  相似文献   

5.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   

6.
The currents in the Drake Passage are studied from the ADCP and CTD data acquired in a section across the Drake Passage in October-November of 2011 and from the satellite altimeter data. A complicated pattern of currents including eight jets of the Antarctic Circumpolar Current (ACC) and a system of slope and abyssal currents was found. The most interesting result is the discovery of several cyclonic and anticyclonic mesoscale eddies confined to the abyss. Some reasons explaining the generation of such eddies by the meandering of the ACC jets in the upper ocean layer are presented.  相似文献   

7.
We study the energy exchange between jets of the Antarctic Circumpolar Current (ACC) and synoptic eddies generated by them in the surface layer of the ocean in the Drake Passage and Scotia Sea based on 22-year-long satellite altimetry time series from the French CLS Agency (DT Global–MADT–Upd product, http://www.aviso.altimetry.fr) under the assumption, based on observations, that each of the jets is confined between two fixed contour lines of the absolute dynamic topography of the ocean. We calculate and analyze the 22-year evolution of the kinetic energy of each ACC jet and cyclonic and anticyclonic eddies generated by it. We demonstrate the fundamental dependence of fluctuations in jet energy on the phase of their meander and eddy formation, as well as their back absorption by jets. We calculate the mean and extreme energetic characteristics of jets and eddies and compare the jets in terms of the intensity of the generated eddies.  相似文献   

8.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   

9.
Hydrographic data from the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) in the region of transition between the Scotia Sea and the Argentine Basin are examined to determine the composition of the deep water from the Southern Ocean that enters the Atlantic, and to describe the pathways of its constituents. The deep current that flows westward against the Falkland Escarpment is formed of several superposed velocity cores that convey waters of different origins: Lower Circumpolar Deep Water (LCDW), Southeast Pacific Deep Water (SPDW), and Weddell Sea Deep Water (WSDW).Different routes followed by the WSDW upstream of, and through, the Georgia Basin, lead to distinctions between the Lower-WSDW (σ4>46.09) and the Upper-WSDW (46.04<σ4 <46.09). The Lower-WSDW flows along the South Sandwich Trench, then cyclonically in the main trough of the Georgia Basin. Although a fraction escapes northward to the Argentine Basin, a comparison of the WOCE data with those from previous programmes shows that this component had disappeared from the southwestern Argentine Basin in 1993/1994. This corroborates previous results using SAVE and pre-SAVE data. A part of the Upper-WSDW, recognizable from different θ–S characteristics, flows through the Scotia Sea, then in the Georgia Basin along the southern front of the Antarctic Circumpolar Current. Northward leakage at this front is expected to feed the Argentine Basin through the northern Georgia Basin. The SPDW is originally found to the south of the Polar Front (PF) in Drake Passage. The northward veering of this front allows this water to cross the North Scotia Ridge at Shag Rocks Passage. It proceeds northward to the Argentine Basin around the Maurice Ewing Bank. The LCDW at the Falkland Escarpment is itself subdivided in two cores, of which only the denser one eventually underrides the North Atlantic Deep Water (NADW) in the Atlantic Ocean. This fraction is from the poleward side of the PF in Drake Passage. It also crosses the North Scotia Ridge at Shag Rocks Passage, then flows over the Falkland Plateau into the Atlantic. The lighter variety, from the northern side of the PF, is thought to cross the North Scotia Ridge at a passage around 55°W. It enters the Argentine Basin in the density range of the NADW.  相似文献   

10.
Currents in the Drake Passage are studied using the data of a hydrographic section along the Shackleton Transverse Ridge observed in November 2007. The distribution of the velocity component normal to the section was computed by two methods: (a) directly on the basis of the lowered acoustic Doppler current profiler (LADCP) data; (b) by the calculation of geostrophic currents based on the CTD data with estimating the depth averaged velocity on the basis of the LADCP data. The main results of the research are the relatively low estimated value of the Antarctic Circumpolar Current (ACC) transport, which accounts for 65–70% of the ACC transports in December 2003 and November 2005, and the confirmation of the existence of several abyssal currents confined to the deep passages of the bottom topography.  相似文献   

11.
The Western Drake Passage current system is investigated using the CTD, LADCP, and SADCP data of the cross Drake section carried out in January 2010. A complicated current structure consisting of the six Antarctic Circumpolar Current (ACC) jets as well as the system of slope and abyssal currents was revealed. The most interesting result is the identification of the abyssal quasi-geostrophic spurts in the northern part that probably are generated by abyssal eddy fragments, which are an imperative part of the meandering ACC.  相似文献   

12.
The horizontal structure of the jets of the Antarctic Circumpolar Current (ACC) is analyzed on the basis of CTD- and LADCP- sounding performed during a hydrophysical survey with a 10-mile spatial resolution in the central part of the Drake Passage in October–November of 2008. According to the modern multijet classification of the ACC, the survey area covered the zones of three jets of the South Polar Current (SPC), which is the middle branch of the ACC. The current jets revealed a fine horizontal thermohaline structure, which was manifested even in the case of the confluence of individual jets into a “superjet.”  相似文献   

13.
The currents in the central part of the Drake Passage are investigated by analyzing the CTD and SADCP data over the section across the Drake Passage occupied in November 2010 and satellite altimetry data. All eight of the jets of the Antarctic Circumpolar Current, which are currently identidifed, were resolved by the section. The velocities and water transports of these jets are estimated. Three synoptic scale eddies with different vertical structures were revealed; hypotheses on the physical nature of these eddies are discussed.  相似文献   

14.
The southern end of the Shackleton Fracture Zone is subducted below the South Shetland forearc, while the basal detachment of the forearc continues eastward of the Shackleton ridge as a thrust fault. The western boundary between the Antarctic/Scotia plates is located at the eastern margin of the Shackleton ridge, where an elongated depositional basin and a morphological trough delineates the contact. The boundary of the Antarctic/Scotia plates and the South Shetland forearc form a triple junction at the intersection of the Shackleton Fracture Zone with the trench, between these two plates, and an independent South Shetland block.  相似文献   

15.
The quantitative features and circulation of the Antarctic bottom water (AABW) in the Scotia Sea are investigated using an original procedure for the determination of the boundaries between the water masses. It is shown that the AABW is effectively transferred across the Antarctic Circumpolar Current (ACC) from the regions on the south flank of this current where the AABW penetrates into the Scotia Sea. This transfer results in the abyssal water cooling and freshening in the Yaghan Basin of the north Scotia Sea. Some rises and depressions in the bottom relief of the western and northern Scotia Sea are important features that impact the AABW transfer. It is shown that there is an additional path of the AABW transit transport to the North Atlantic passing through the western Scotia Sea. The existence of the semienclosed cyclonic abyssal water circulation in the South Shetland Trench and the westward transport of the Atlantic AABW along the Antarctic slope foot into the Pacific are proved.  相似文献   

16.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

17.
Dissolved trace element distributions near Elephant Island in the Drake Passage show extremely high levels of dissolved Fe and Mn in waters above the shelf. The entrainment of this enriched shelf water by the Fe-poor Antarctic Circumpolar Current (ACC) as it passes through the Shackleton Gap delivers an estimated 2.8×106 mol yr−1 dissolved Fe to the offshore waters of the Drake Passage. The magnitude and spatial distribution of dissolved Fe, Mn and Al over the shelf are consistent with a diagenetically produced sedimentary source, but are inconsistent with eolian or upwelling sources. The systematics of the Mn and Fe concentrations suggest that there are two distinct sources of dissolved Fe to the surface waters of this region. The highest Fe concentrations are associated with Bransfield Strait water, which can be identified by its characteristic temperature and salinity (T/S) properties both inside the Bransfield Strait and in the Bransfield Current outflow between Elephant and Clarence Islands. Most of the shelf area is dominated by a second water type with T/S properties that are typical of modified Antarctic Surface Water, which while also enriched has a lower Fe:Mn ratio.The predominantly linear relationships between the Fe and Mn concentrations at the stations in each of these water mass types suggest that the distribution of these elements is largely controlled by physical mixing processes and that biological removal of Fe on the shelf, while certainly occurring, is limited, perhaps as a result of rapid physical flushing processes and relatively slow biological growth rates. The consequent export of large quantities of this shelf-derived Fe into the ACC is likely responsible for the extensive regions of enhanced primary production seen in satellite imagery downstream of the Drake Passage.  相似文献   

18.
Scaling of the equations of motion of the Antarctic Circumpolar Current indicates that the Rossby number and the Ekman number are 10−4 to 10−5 but the vertical Ekman number may reach unity in the bottom boundary layer. The equations of motion are integrated vertically from the surface to the bottom and averaged over a latitude circle. The resulting equation in the meridional direction is predominantly geostrophic, whereas the main terms of the equation in the zonal direction are the wind stress and the bottom stress. When the vertical eddy viscosity near the bottom is of the order of 102cm2/sec, the total zonal transport through the Drake Passage computed from the balance of the wind stress and the bottom stress equals 260×106m3/sec, the amount determined byReid andNowlin (1970) from observations. The northward transport reduces the eastward transport corresponding to the wind stress of the westerlies in the A. C. C. through the Coriolis' term in the vertically integrated equation of motion of the zonal direction. South of the Drake Passage, such reduction reaches about ten percent of the wind-driven transport mainly due to the peripheral water discharge. North of the Drake Passage, the northward transport may be generated by the effect of the South American coast which prevents free eastward movement of the A. C. C., causing a wake to the east. This transport may contribute to a part of the northward transport of the bottom water postulated byMunk (1966). The effect of the horizontal eddy viscosity in the zonal transport equation is negligible except near the Antarctic coast, if the eddy viscosity is less than 109cm2/sec.  相似文献   

19.
The traditional image of ocean circulation between Australia and Antarctica is of a dominant belt of eastward flow, the Antarctic Circumpolar Current, with comparatively weak adjacent westward flows that provide anticyclonic circulation north and cyclonic circulation south of the Antarctic Circumpolar Current. This image mostly follows from geostrophic estimates from hydrography using a bottom level of no motion for the eastward flow regime which typically yield transports near 170 Sv. Net eastward transport of about 145 Sv for this region results from subtracting those westward flows. This estimate is compatible with the canonical 134 Sv through Drake Passage with augmentation from Indonesian Throughflow (around 10 Sv).A new image is developed from World Ocean Circulation Hydrographic Program sections I8S and I9S. These provide two quasi-meridional crossings of the South Australian Basin and the Australian–Antarctic Basin, with full hydrography and two independent direct-velocity measurements (shipboard and lowered acoustic Doppler current profilers). These velocity measurements indicate that the belt of eastward flow is much stronger, 271 ± 49 Sv, than previously estimated because of the presence of eastward barotropic flow. Substantial recirculations exist adjacent to the Antarctic Circumpolar Current: to the north a 38 ± 30 Sv anticyclonic gyre and to the south a 76 ± 26 Sv cyclonic gyre. The net flow between Australia and Antarctica is estimated as 157 ± 58 Sv, which falls within the expected net transport of 145 Sv.The 38 Sv anticyclonic gyre in the South Australian Basin involves the westward Flinders Current along southern Australia and a substantial 33 Sv Subantarctic Zone recirculation to its south. The cyclonic gyre in the Australian–Antarctic Basin has a substantial 76 Sv westward flow over the continental slope of Antarctica, and 48 ± 6 Sv northward-flowing western boundary current along the Kerguelen Plateau near 57°S. The cyclonic gyre only partially closes within the Australian–Antarctic Basin. It is estimated that 45 Sv bridges westward to the Weddell Gyre through the southern Princess Elizabeth Trough and returns through the northern Princess Elizabeth Trough and the Fawn Trough – where a substantial eastward 38 Sv current is hypothesized. There is evidence that the cyclonic gyre also projects eastward past the Balleny Islands to the Ross Gyre in the South Pacific.The western boundary current along Kerguelen Plateau collides with the Antarctic Circumpolar Current that enters the Australian–Antarctic Basin through the Kerguelen–St. Paul Island Passage, forming an energetic Crozet–Kerguelen Confluence. Strongest filaments in the meandering Crozet-Kerguelen Confluence reach 100 Sv. Dense water in the western boundary current intrudes beneath the densest water of the Antarctic Circumpolar Current; they intensely mix diapycnally to produce a high potential vorticity signal that extends eastward along the southern flank of the Southeast Indian Ridge. Dense water penetrates through the Ridge into the South Australian Basin. Two escape pathways are indicated, the Australian–Antarctic Discordance Zone near 125°E and the Geelvinck Fracture Zone near 85°E. Ultimately, the bottom water delivered to the South Australian Basin passes north to the Perth Basin west of Australia and east to the Tasman Basin.  相似文献   

20.
Morozov  E. G.  Flint  M. V.  Spiridonov  V. A.  Tarakanov  R. Yu. 《Oceanology》2019,59(6):989-991
Oceanology - The research program of the dynamics and ecosystem of the Drake Passage and Scotia Sea is scientifically substantiated. Measurements will be carried out by the interdepartmental...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号