首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Purulia carbonatite, ‘carbonatite’-‘alkali-pyroxenite’-‘apatite-magnetite rock’ association, is located at Beldih area of Purulia district, West Bengal and falls within the 100 km long Northern Shear Zone (NSZ). Published literature suggests that the Purulia carbonatite was formed by the process of liquid immiscibility from under-saturated silicate parent magma. However, no silica under-saturated rocks like ijolite, nepheline-syenite etc. is known from the area. The trace element geochemistry (Ba/La, Nb/Th, Nb/Pb and Y/Ce ratios in the present study) also does not support this view. Present study indicates that the Purulia carbonatite is enriched in ΣREE and incompatible elements but the carbonatite is also poorer in Nb, Th and Pb compared to the world average of calicocarbonatites. The lower value of Nb is characteristics of carbo(hydro)thermal carbonatite where carbonatite is associated with alkali-pyroxenite and suggests probable origin of the carbonatite as carbothermal residua evolved from an unknown parentage. However, the field, petrographic and geochemical data indicate the genesis of this carbonatite from a primary carbonatitic magma of mantle decent. The 87Sr/86Sr ratio of the carbonatite and apatite separated from the carbonatite (~0.703) implies primary magmatic derivation of the Purulia carbonatite. Close similarity of the apatite of the apatite-magnetite rock with the mantle apatite (of type Apatite B) indicates that they are also of primary magmatic origin. The present work portrays a unique example where primary magmatic carbonatite is associated with the alkali-pyroxenite.  相似文献   

2.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   

3.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

4.
全球范围内出露的碳酸岩大多为钙质、镁质、铁质碳酸岩,少量为钠质和硅质碳酸岩,极少有富Sr碳酸岩的报道,其岩石成因、资源意义及对碳酸岩岩浆演化的指示意义尚不清楚。本次在四川省牦牛坪稀土矿区南部包子山稀土矿床的露天采坑中发现了超级富Sr的碳酸岩,其呈不规则的脉状侵入到构造角砾岩中。岩石呈紫色-淡紫色,微晶-斑状结构,斑晶主要为萤石,基质主要为菱锶矿、方解石、氟碳铈矿、氟碳钙铈矿、金云母、重晶石并含少量的金属硫化物和氧化物。全岩的微量元素分析表明,其稀土元素总量(∑REE)达3.5%~6.1%,Sr含量达19.0%~27.7%,已超过稀土矿床和锶矿床的工业品位要求。岩石中的中、重稀土元素含量占稀土元素总量的1.14%~1.77%,一些高价值稀土元素含量较高,如Pr(939×10~(-6)~1399×10~(-6))、Nd(2783×10~(-6)~3937×10~(-6))、Gd(237×10~(-6)~320×10~(-6)),因此除轻稀土元素外,中、重稀土和锶元素也具有重要的资源意义。岩石强烈富集REE、Sr、Ba,而明显亏损P、Nb、Ta、Zr、Hf元素,可能与岩浆演化过程中锆石和其它基性矿物的结晶分离有关。全岩的Sr-Nd同位素组成与牦牛坪、里庄稀土矿床的碳酸岩相似,表明它们为同源岩浆产物。笔者认为,富Sr的碳酸岩代表了碳酸岩岩浆演化晚期的产物,REE、Sr、Ba、F和S元素均在岩浆演化晚期的碳酸岩中高度富集。碳酸岩岩浆超浅成侵位至构造角砾岩中,并与下渗的大气水相遇导致岩浆的淬冷和微晶-斑状结构的形成。早期基性矿物(如霓辉石、黑云母)及碳酸盐矿物(如方解石、白云石等)的结晶分离是造成晚期碳酸岩中稀土元素富集的重要原因。富Sr碳酸岩中石英斑晶的发现和其较低的SiO_2含量表明碳酸岩岩浆演化晚期可能是硅饱和的,且这种岩浆具有很低的SiO_2溶解能力。以菱锶矿(体积分数 50%)为主要碳酸盐矿物的稀土碳酸岩可能代表了一种新的碳酸岩类型,明显不同于已知的钙质、镁质、铁质和钠质碳酸岩。  相似文献   

5.
Allochthonous carbonatite and ultramafic lamprophyre occur in a diatreme at the beach of the Asseelah village, northeastern Oman. The diatreme consists of heterogeneous deposits dominated by ‘diatreme facies’ pyroclastic rocks. These include aillikite and carbonatite, which intrude late Jurassic to early Cretaceous cherts and shales of the Wahra Formation within the Batain nappes. Both rock types are dominated by carbonate, altered olivine, Ti–Al–phlogopite and Cr–Al–spinel and contain varying amounts of apatite and rutile. The carbonatite occur as fine-grained heterolithic breccias with abundant rounded carbonatite xenoliths, glimmerite and crustal xenoliths. The aillikite consists of pelletal lapilli tuff with abundant fine-grained carbonatite autoliths and crustal xenoliths, which resemble those in the carbonatite breccia. The aillikite and carbonatite are characterized by low SiO2 (11–24 wt%), MgO (9.5–12.4 wt%) and K2O (<0.3 wt%), but high CaO (18–22 wt%), Al2O3 (4.75–7.04 wt%), Fe2O3tot (8.7–13.8 wt%) and loss-on-ignition (24–30 wt%). Higher CaO, Fe2O3total, Al2O3, MnO, TiO2, P2O5 and lower SiO2 and MgO content distinguish carbonatite from the aillikite. The associated carbonatite xenoliths and autoliths have intermediate composition between the aillikite and carbonatite. Mg number is variable and ranges between 58 and 66 in the carbonatite, 66 and 72 in the aillikite and between 48 to 64 in the carbonatite autoliths and xenoliths. The Asseelah aillikite, carbonatite, carbonatite xenoliths and autoliths overlap in most of their mineral parageneses, mineral composition and major and trace element chemistry and have variable but overlapping Sr, Nd and Pb isotopic composition, implying that these rocks are related to a common type of parental magma with variable isotopic characteristics. The Asseelah aillikite, carbonatite and carbonatites xenoliths are LREE-enriched and significantly depleted in HREE. They exhibit similar smooth, subparallel REE pattern and steep slopes with (La/Sm) n of 6–10 and relative depletion in heavy rare earth elements (Lu = 3–10 chondrite). Initial 87Sr/86Sr ratios vary from 0.70409 to 0.70787, whereas initial 143Nd/144Nd ratios vary between 0.512603 and 0.512716 (εNd i between 2.8 and 3.6). 206Pb/204Pb i ratios vary between 18.4 and 18.76, 207Pb/204Pb i ratios vary between 15.34 and 15.63, whereas 208Pb/204Pb i varies between 38.42 and 39.05. Zircons grains extracted from the carbonatite have a mean age of 137 ± 1 Ma (95% confidence, MSWD = 0.49). This age correlates with large-scale tectonic events recorded in the early Indian Ocean at 140–160 Ma. Geochemical and isotopic signatures displayed by the Asseelah rocks can be accounted for by vein-plus-wall-rock model of Foley (1992) wherein veins are represented by phlogopite, carbonate and apatite and depleted peridotite constitutes the wall-rock. The carbonatite and aillikite magmatism is probably a distal effect of the breaking up of Gondwana, during and/or after the rift-to-drift transition that led to the opening of the Indian Ocean.  相似文献   

6.
Although general accounts of carbonatites usually envisage Ca-Mg carbonate melts evolving by fractional crystallisation to Fe-rich residua, there is longstanding concern that ferrocarbonatites may actually be products of hydrothermal rather than magmatic processes. All previously published examples of ankerite- and/or siderite-carbonatites fail to show one or more of the isotopic criteria (all determined on the same sample) thought to be diagnostic of crystallised magmatic carbonate liquids. Ferrocarbonatite dykes cut Archaean-Proterozoic basement at Swartbooisdrif, adjacent to the NW Namibia-Angola border. Their age is uncertain but probably ~1,100 Ma and their associated fenites are rich in sodalite. Where unaffected by subsequent recrystallisation, their petrographic textures resemble those of silicate layered intrusions; ankerite, magnetite and occasionally calcite are cumulus phases, joined by trace amounts of intercumulus pyrochlore. Ankerite is zoned, from Ca(Mg, Fe2+)(CO3)2 cores towards ferroan dolomite rims. Calcite contains ~1.7% SrO, plus abundant, tiny exsolved strontianite grains. Magnetite is close to pure Fe3O4. Pyrochlore has fine-scale euhedral oscillatory zoning and light-REE-enriched rims. ICP-MS analysis of magnetite and pyrochlore from the carbonatite allows calculation of their modal amounts from mass-balance considerations. Sodalite from the fenite is REE poor. Geothermometry, using either the calcite-dolomite solvus or oxygen isotope fractionation between calcite and magnetite, gives temperatures in the range 420-460 °C. Initial Sr, Nd and Pb isotopic ratios of the ferrocarbonatites (87Sr/86Sr=0.7033; )Nd=0.2-1.0; 206Pb/204Pb=16.37; 207Pb/204Pb=15.42; 208Pb/204Pb=36.01) are appropriate for an ~1,100-Ma magmatic carbonatite. Likewise, carbonate '18O=8.0 and '13C=-7.36 indicate little or no subsequent shift from magmatic values. It appears that dense ankerite and magnetite dominated crystal accumulation from a melt saturated in these phases, plus calcite and pyrochlore, with prior fractionation of a silicate mineral and apatite. The resulting ferrocarbonatite lacks a silicate mineral (excluding fenite xenocrysts) and apatite. It has unusually low (basalt-like) REE abundances and (La/Lu)n, and low concentrations of Ba, Rb, U, Th, Nb, Ta, Zr and Hf. Very high Nb/Ta and low Zr/Hf imply that the evolution of the parental magma involved immiscible separation of a carbonate from a silicate melt. The sodalite-dominated Swartbooisdrif fenites suggest that the parental melt also had a substantial Na content, in contrast with the ferrocarbonatite rock.  相似文献   

7.
The Siriwasan carbonatite-sill along with associated alkaline rocks and fenites is located about 10 km north of the well-known Amba Dongar carbonatite-alkaline rocks diatreme, in the Chhota Udaipur carbonatite-alkaline province. Carbonatite has intruded as a sill into the Bagh sandstone and overlying Deccan basalt. This resulted in the formation of carbonatite breccia with enclosed fragments of basement metamorphics, sandstone and fenites in the matrix of ankeritic carbonatite. The most significant are the plugs of sövite with varied mineralogy that include pyroxene, amphibole, apatite, pyrochlore, perovskite and sphene. REE in sövites is related to the content of pyrochlore, perovskite and apatite. The carbon and oxygen isotopic compositions of some sövite samples and an ankeritic carbonatite plot in the “mantle box” pointing to their mantle origin. However, there is also evidence for mixing of the erupting carbonatite magma with the overlying Bagh limestone. The carbonatites of Siriwasan and Amba Dongar have the same Sr and Nd isotopic ratios and radiometric age, suggesting the same magma source. On the basis of available chemical analyses this paper is aimed to give some details of the Siriwasan carbonatites. The carbonatite complex has good potential for an economic mineral deposit but this is the most neglected carbonatite of the Chhota Udaipur province.  相似文献   

8.
Pyrochlore is interpreted as a primary magmatic mineral that appeared in early carbonatite phases at Amba Dongar. Later intrusive phases incorporated this early pyrochlore and caused compositional modification, particularly around the rims, in response to changing magma chemistry. Consequently pyrochlore compositions show wide ranges in Nb, Ta, Ca, Ba, Ti and Ce. The final carbonatite phase was ankeritic and rich in hydrothermal fluids, giving rise to extreme compositional zoning and introduction of diverse elements (Si, U, Sr, Th, Fe), in the contained pyrochlore. Enrichment in radioelements such as U lead to metamictization, alteration and A-site vacancy.  相似文献   

9.
A recently discovered dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia, dated at 624 ± 3 Ma, contains xenoliths of calcite-bearing dolomite carbonatite with graphite spherulites. Apatite and aegirine are the other rock-forming minerals. Chemically the carbonatites are ferrocarbonatite and ferruginous calciocarbonatite. The graphite forms <1 mm up to 1.5 mm diameter spherulites, with Raman spectra similar to published spectra of microcrystalline, amorphous carbon and disordered graphite, with G and D bands at 1,580−1,600 cm−1 and at around 1,350 cm−1. Alteration has formed Fe-bearing calcite to Ca-bearing siderite compositions not previously reported in nature around the graphite along cracks and fractures. Mineral and stable isotope geothermometers and melt inclusion measurements for the carbonatite all give temperatures of 700°–900°. It is concluded that the graphite precipitated from the ferrocarbonatite magma. There are three candidates to control the precipitation of graphite (a) a redox reaction with FeII in the magma, (b) potential presence of organics in the magma (c) seeding of, or dissolution in, the magma of graphite/diamond from the mantle, and further work is required to identify the most important mechanism(s). Graphite in carbonatite is rare, with no substantial published accounts since the 1960s but graphite at other localities seems also to have precipitated from carbonatite magma. The precipitation of reduced carbon from carbonatite provides further evidence that diamond formation in carbonate melts at high mantle pressures is feasible.  相似文献   

10.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

11.
Carbonatites of the Jacupiranga alkaline–carbonatite complex in São Paulo State, Brazil, were used to investigate mineral–fluid interaction in a carbonatite magma chamber because apatite showed a marked discontinuity between primary fluid inclusion-rich cores and fluid inclusion-poor rims. Sylvite and burbankite, apatite, pyrite, chalcopyrite and ilmenite are the common phases occurring as trapped solids within primary fluid inclusions and reflect the general assemblage of the carbonatite. The apatite cores had higher Sr and REE concentrations than apatite rims, due to the presence of fluid inclusions into which these elements partitioned. A positive cerium anomaly was observed in both the core and rim of apatite crystals because oxidised Ce4+ partitioned into the magma. The combined evidence from apatite chemistry, fluid inclusion distribution and fluid composition was used to test the hypotheses that the limit of fluid inclusion occurrence within apatite crystals arises from: (1) generation of a separate fluid phase; (2) utilization of all available fluid during the first stage of crystallization; (3) removal of crystals from fluid-rich magma to fluid-poor magma; (4) an increase in the growth rate of apatite; or (5) escape of the fluids from the rim of the apatite after crystallization. The findings are consistent with fractionation and crystal settling of a carbonatite assemblage in a fluid-stratified magma chamber. Secondary fluid inclusions were trapped during a hydrothermal event that precipitated an assemblage of anhedral crystals: strontianite, carbocernaite, barytocalcite, barite and norsethite, pyrophanite, magnesian siderite and baddeleyite, ancylite-(Ce), monazite-(Ce) and allanite. The Sr- and REE-rich nature of the secondary assemblage, and lack of a positive cerium anomaly indicate that hydrothermal fluids have a similar source to the primary magma and are related to a later carbonatite intrusion.  相似文献   

12.
四川木洛稀土矿床碳酸岩地球化学   总被引:1,自引:1,他引:0       下载免费PDF全文
木洛稀土矿床成因上与碳酸岩-碱性杂岩密切相关。碳酸岩主要由方解石组成,CaO/(CaO+MgO+FeO+Fe2O3+MnO)比值在95.7%~99.6%,为方解石碳酸岩。碳酸岩相对富集大离子亲石元素Ba、Sr、LREE,亏损高场强元素Nb、Ta、Ti、Zr、P,高Zr/Hf和La/Nb值,低Sm/Nd和Rb/Sr值,暗示岩石来自富集地幔EMI。地质、地球化学研究表明,木洛碳酸岩是在峨眉山地幔柱地幔遗存物经喜马拉雅造山运动再次活化的产物,但碳酸岩熔浆在上侵过程中受到地壳物质混染。碳酸岩-碱性岩熔浆带来大量稀土元素,并在喜马拉雅造山期造山运动派生的局部引张部位成矿。  相似文献   

13.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

14.
长白山区二道白河流域早更新世玄武质熔岩的成因   总被引:2,自引:1,他引:1  
马晗瑞  杨清福  盘晓东  武成智  陈聪 《岩石学报》2015,31(11):3484-3494
采用岩石化学和同位素分析方法,研究了二道白河流域早更新世玄武质熔岩的成因。玄武质熔岩由钠质拉斑玄武岩和钾质粗面玄武岩、玄武质粗面安山岩组成。它们的REE分配形式比较相近,表明它们来自共同的源区。Sr、Nd、Pb同位素示踪表明,二道白河流域早更新世玄武质熔岩岩浆源区接近于似原始地幔。它们的Mg#=100Mg O/(Mg O+Fe O)低于中国东部新生代玄武岩原始岩浆的Mg#(60~68),Ni(27.76×10-6~200.6×10-6)低于原始地幔,Rb/Sr(0.05~0.09)、Ba/Rb(15.64~264)高于原始地幔,说明这些岩石不是源自原始地幔。玄武质熔岩的DI变化于42~67,具有高Ca、高Sr、Eu正异常,微量元素图解显示玄武岩保留部分熔融趋势,粗面玄武岩、玄武质粗安岩具有结晶分异趋势,岩浆上升过程中发生了不同程度的地壳混染作用。玄武质熔岩的Nb/Ta之比为14.8~15.8,与勘察加半岛深俯冲带火山类似。Nb/Ta-(Na2O-K2O)关系图解显示研究区玄武质岩浆的形成与俯冲板片的部分熔融有关。  相似文献   

15.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

16.
We report the results of LA-ICP-MS analyses of rock forming minerals in clinopyroxene-apatite-K feldspar-phlogopite (CAKP) metasomatic xenoliths and primary carbonatite melt inclusions (CMI) hosted in apatite (Ap) and K feldspar (Kfs). The xenoliths are from the Cretaceous lamprophyre dikes of the Transdanubian Central Range, Hungary. The CMI in Ap have phosphorus dolomitic composition as opposed to CMI in Kfs, which display dolomitic alkali-aluminosiliceous character. The melts found in CMI in Ap and in Kfs likely formed by liquid-liquid separation from an originally carbonate- and phosphorous-rich melt. Primitive mantle (PM) normalized trace element distributions of both Ap- and Kfs-hosted CMI (n = 60 and 20, respectively) reveal a strong negative Ti-anomaly, and an extreme enrichment in incompatible elements (U, Th, LILE and LREE) relative to HREE, Sc, V, Ni and Cr. Rarely, apatites contain unique CMI, which show major- and trace-element signature transitional to K feldspar-hosted CMI. This is due to heterogeneous entrapment of an immiscible phosphorous-bearing carbonatite melt and a carbonate-bearing alkali aluminosiliceous melt, which is a further evidence for their co-existence. CMI reveal that U, Th, Pb, Nb, Ta, P, Sr, Y and REE partitioned into the phosphorous-bearing carbonatite melt, whereas Cs, Rb, Na, K, B, Al, Zr and Hf preferred the silicate-bearing liquid.PM normalized REE pattern (high LREE/HREE), elevated Zr and Hf contents and negative Ti anomaly of clinopyroxene (Cpx) indicate that its formation is genetically linked to carbonatite metasomatism attested by CMI. Trace element partitioning between the studied Cpx and CMI is in accordance with experimentally determined trace element distributions between Cpx and carbonatite melt. Cpx, which occur in samples with high modal proportion of apatite represent mantle section, which interacted with a higher amount of “initial” carbonatite melt than Cpx from apatite-poor xenoliths. This is confirmed by higher Cr, Ni, V, Sc, Ti and lower Zr, as well as Hf concentration in Cpx from xenoliths with low modal abundance of Ap. CMI reveal that Ti, V, Ni and Cr were in lower concentration in the “initial” carbonatite melt than in PM. Contrarily, Zr and Hf were more abundant in this melt than in PM. Consequently, a continuously migrating “initial” carbonatite melt, increased Zr and Hf concentration, and decreased Ti, Sc, V, Ni and especially Cr in the clinopyroxenes. Our findings suggest that the studied CAKP rocks were formed by carbonatite melt metasomatism, which occurred in an open system in the upper mantle.  相似文献   

17.
陕西省华阳川铀铌铅矿床是小秦岭成矿带中成矿特征最为独特的矿床,碳酸岩脉的破碎带是重要的成矿空间。未矿化的碳酸岩中矿物以方解石为主,其他矿物很少;发育铀矿化的碳酸岩脉中矿物种类繁多,大部分为方解石,其次为角闪石、金云母、榍石、褐帘石、铌钛铀矿、重晶石、磷灰石、石英、磁铁矿、碱性长石等矿物。碳酸岩的LREE含量异常高,δ13CV-PDB和δ18OV-SMOW值显示典型的火成碳酸岩特征。基于碳酸岩脉的Sr、Nd、Pb同位素比值(87Sr/86Sr-206Pb/204Pb、207Pb/204Pb-206Pb/204Pb-143Nd/144Nd-87Sr/86Sr)的关系图,初步判断华阳川铀铌铅碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物。  相似文献   

18.
Carbonatites, metasomatised country rocks, and carbonatitic calcite and magnetite have been analysed from two carbonatite complexes, Homa and Wasaki, W. Kenya.The carbonatites are all greatly Ce-earth enriched, contain abundant ‘carbonatitic’ trace elements (Sr, Ba, Nb and REE), and generally low concentrations of Cr, Co, Ni, Pb, Ga, Ge, Sn, Bi, Li and Mo. At both complexes early søvite is rich in Sr, and impoverished in other trace elements relative to the alvikites. The late-intruded melacarbonatites contain the greatest concentrations of Ba, REE, Fe and Mn.It is concluded that the accumulation of these elements in the later carbonatites is mainly due to fractionation of carbonates from carbonatite magma which was initially rich in ‘carbonatitic’ trace elements.  相似文献   

19.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

20.
We investigated the isotope composition (O, C, Sr, Nd, Pb) in mineral separates of the two Precambrian carbonatite complexes Tiksheozero (1.98 Ga) and Siilinjärvi (2.61 Ga) from the Karelian–Kola region in order to obtain information on Precambrian mantle heterogeneity. All isotope systems yield a large range of variations. The combination of cathodoluminescence imaging with stable and radiogenic isotopes on the same samples and mineral separates indicates various processes that caused shifts in isotope systems. Primary isotope signatures are preserved in most calcites (O, C, Sr, Pb), apatites (O, Sr, Nd), amphiboles (O), magnetites (O), and whole rocks (Sr, Nd).

The primary igneous C and O isotope composition is different for both complexes (Tiksheozero: δ13C = − 5.0‰, δ18O = 6.9‰; Siilinjärvi: δ13C = − 3.7‰, δ18O = 7.4‰) but very uniform and requires homogenization of both carbon and oxygen in the carbonatite melt. The lowest Sr isotope ratios of our carbonates and apatites from the Archaean Siilinjärvi (0.70137) and the Palaeoproterozoic Tiksheozero (0.70228) complexes are in the range of bulk silicate earth (BSE). Positive εNd values of the two carbonatites point to very early Archaean enrichment of Sm/Nd in the Fennoscandian mantle. No HIMU components could be detected in the two complexes, whereas Tiksheozero carbonatites give the first indication of Palaeoproterozoic U depletion for Fennoscandia.

Sub-solidus exchange processes with water during emplacement and cooling of carbonatites caused an increase in the oxygen isotope composition of some carbonates and probably also an increase of their 87Sr/86Sr ratio. A larger increase of initial Sr isotope ratios was found in carbonatized silicic rocks compared to carbonatite bodies. The Svecofennian metamorphic overprint (1.9–1.7 Ga) caused reset of Rb/Sr (mainly mica) and Pb/Pb (mainly apatite) isochron systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号