首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mapping along a transect from the southeastern margin of the South Patagonian Ice-field in Torres del Paine National Park (Chile) to the limits of fresh moraines of the last glacial cycle indentified eight glacier advances. The four younger ones have been dated by dendrochronology, tephrochronology and radiocarbon dating. Although the bases of 10 m deep bogs were sampled, close limiting radiocarbon dates were not obtained because bog formation in this rain-shadow area appears not to have commenced until ca.12000 yr ago. The outermost Little Ice Age moraine formed during the seventeenth century and three inner ones were deposited around ad 1805, 1845 and after 1890. Densely vegetated older moraines contiguous with Little Ice Age deposits are possibly of late Holocene age. Tephra from the eruption of Reclus volcano at ca. 11 880 yr BP was incorporated by a readvance that deposited large multiple moraines 10–16 km from the modern ice-front; the oldest basal peat found inside the moraine has been dated to ca. 9200 yr BP. These bracketing dates indicate that some eastern outlet glaciers of the ice-field advanced at a time when some western tidewater outlet glaciers terminated inside their modern limits. This questions the view of J. H. Mercer and other that Patagonian glaciers did not readvance during the late-glacial interval. A stadial event also occurred when the glaciers were some 18–20 km from their modern positions and is closely dated to ca. 11880 yr BP because Reclus pumice flushed down-glacier forms thick upper beds in outwash deltas deposited in proglacial lakes. The four older moraines pre-date the late-glacial eruption of Reclus but are not dated closely. Comparison of their spatial extent with well-dated moraines in the Chilean Lakes Region suggests that they may mark advances culminating at ca. 14000 yr BP, ca. 20000 yr BP and earlier.  相似文献   

2.
Radiocarbon dates on molluses in marine facies associated with glacial deposits in northern Cumberland Peninsula indicate both main fiord (Laurentide) ice and local glaciers remained at their late Wisconsin maxima until ca. 8000 BP. Essentially continuous deglaciation followed; local corrie glaciers melted out by 7100 BP and by 5500 BP fiord glaciers had receded behind the present margin of the Penny Ice Cap. The Hypsithermal warm interval probably lasted from ca. 8000 to 5000 BP. Lichenometry and radiocarbon dates on peat and buried organic horizons delimit a detailed Neoglacial chronology. Of 46 outlet and corrie glaciers investigated, the oldest Neoglacial moraines are dated lichenometrically at 3200 ± 600 BP. Subsequent advances terminated immediately prior to ca. 1650, 780, 350, and 65 yr BP, the most recent of which marked the most extensive ice coverage during the Neoglacial. The highest occurrence of lateral moraines from late Wisconsin advances of local and Laurentide ice suggest that at the late Wisconsin glacial maximum, depression of snowline varied from 450 m below present at the coast to 350 m below present level in the vicinity of the Penny Ice Cap. Moraines, surrounded by glacial ice and lying above the present steady-state ELA, suggest that during the Hypsithermal snowline was up to ca. 200 m above its present elevation. A radiometrically controlled reconstruction of relative summer paleotemperatures for the postglacial derived independently of lichenometry agrees well with the lichenometric age dating of moraines. The data suggest that between ca. 1650 and 900 BP climatic conditions were unfavorable for glacier growth, whereas the period ca. 800-65 yr BP was one of general glacial activity. During the last decade permanent snow cover has been increasing in the area. Previously reported data on climatic trends in the Canadian Arctic based on palynological analyses are similar to the chronology reported here.  相似文献   

3.
Randomisation tests on boulder weathering data distinguish moraines of four different ages in the Rongbuk Valley, all deposited by valley glaciers flowing northward into Tibet from the Himalaya. Lichenometry utilising subgenus Rhizocarpon distinguishes two groups of moraines, those <100 yr old and those older than several thousand years. The degree of soil development has a similar, limited utility in relative-age dating these moraines. The radiocarbon ages of calcium carbonate coatings in the lower horizons of moraine soils provide minimum-limiting ages of 1900 yr BP for the penultimate advance of the Rongbuk glacier (Samdopo moraine) and 9500 yr BP for the Rongbuk moraine, the moraine suggested by previous workers to represent the last glacial maximum. Equilibrium-line depression associated with the Rongbuk moraine probably was slight, <200 m. The small magnitude of this depression relative to glaciers in other mountain ranges could relate to a weakening of the monsoon in full glacial times, recent tectonic uplift, and/or to the insensitivity of these high-altitude glaciers to lowering temperatures in the rain shadow of Mount Everest.  相似文献   

4.
Moraine sequences in front of seven relatively low‐altitude glaciers in the Breheimen region of central southern Norway are described and dated using a ‘multi‐proxy’ approach to moraine stratigraphy. Lichenometric dating, based on the Rhizocarpon subgenus, is used to construct a composite moraine chronology, which indicates eight phases of synchronous moraine formation: AD 1793–1799, 1807–1813, 1845–1852, 1859–1862, 1879–1885, 1897–1898, 1906–1908 and 1931–1933. Although the existence of a few cases of older moraines, possibly dating from earlier in the eighteenth or late in the seventeenth centuries cannot be ruled out by lichenometry, Schmidt hammer R‐values from boulders on outermost moraine ridges suggest an absence of Holocene moraines older than the Little Ice Age. Twenty‐three radiocarbon dates from buried soils and peat associated with outermost moraines at three glaciers—Tverreggibreen, Storegrovbreen and Greinbreen—also indicate that the ‘Little Ice Age’ glacier maximum was the Neoglacial maximum at most if not all glaciers. Several maximum age estimates for the Little Ice Age glacier maximum range between the fifteenth and seventeenth centuries, with the youngest from a buried soil being AD 1693. A pre‐Little Ice Age maximum cannot be ruled out at Greinbreen, however, where the age of buried peat suggests the outermost moraine dates from AD 981–1399 (at variance with the lichenometric evidence). Glaciofluvial stratigraphy at Tverreggibreen provides evidence for minor glacier advances about AD 655–963 and AD 1277–1396, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The morphology and sedimentology of glacially influenced fan-deltas on massifs at the margin of the southern Altiplano, Bolivia, suggest a broadly synchronous expansion of glaciers and palaeolake Tauca during the late-glacial interval. This is shown by sedimentary successions of glacigenic, glacifluvial and glacideltaic facies linking palaeoglaciers with palaeolake Tauca on the flanks of Cerro Azanaques and Cerro Tunupa at altitudes of 3770–3720 m. Radiocarbon dates from peat overlain by glacial diamict and glacifluvial outwash indicate that glaciers in this area reached their last glacial maximum extent after ca. 13 300 14 C yr BP. Glacifluvial fan-deltas contiguous with the moraines confirm that the advance coincided with a highstand of palaeolake Tauca radiocarbon dated to the interval ca. 13 500–11 500 yr BP. Modeling of climatic controls on this glacier advance suggests the primary forcing was increased summer (wet season) moisture, possibly amounting to 600 mm above the modern values of 200–400 mm. Greater cloud cover probably depressed local temperatures and reduced the evaporation rate. The consequent rise in effective annual moisture ( PE ) comfortably accommodates a palaeolake 48–50 × 10 3 km 2 in area and up to 100 m deep in the southern Altiplano. Because the palaeoglacier equilibrium-line altitudes rose toward the south and west, like the gradient of modern precipitation totals, we conclude that the increased late-glacial moisture was brought by weather systems similar to those of the present, but that atmospheric conditions were cloudier and cooler. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
During the last glacial maximum in West Antarctica separate ice caps developed on Alexander Island and on Palmer Land, became confluent in George VI Sound, and discharged northward from latitude 72° S. Radiocarbon (>32,000 yr) and amino acid (approximately 120,000 yr) age determinations on shell fragments (Hiatella solida) found in basal till suggest a Wisconsin age for the glaciation that incorporated them. The pattern of ice flow differed from that deduced for this area in the CLIMAP reconstruction. Following the maximum stage, there was a stadial event when outlet valley glaciers flowed from smaller ice caps into George VI Sound. More widespread recession permitted the George VI ice shelf to deposit Palmer Land erratics on eastern Alexander Island before isostatic recovery raised them to final elevations of about 82 m. The ice shelf may have been absent at about 6500 yr B.P., when large barnacles (Bathylasma corolliforme) were living in the sound. Small glaciers readvanced to form at least two terminal moraines before the ice shelf re-formed and incorporated the barnacle shells into its moraine on Alexander Island. The shells gave a 14C age (corrected for Antarctic conditions) of about 6500 yr B.P. and an amino acid ratio consistent with a Holocene age. Valley glaciers readvanced over the ice-shelf moraine before oscillations of both valley glaciers and the ice shelf led to the formation of the present sequence of contiguous ice-cored moraines, probably during the Little Ice Age. Such oscillations may represent a climatic control not yet observed in the dry valleys of Victoria Land, the only other part of Antarctica studied in detail for glacier fluctuations.  相似文献   

7.
The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to 20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald’s Beringian ice-sheet hypothesis.  相似文献   

8.
Holocene glacial advances in the Banff-Jasper-Yoho area of the Canadian Rocky Mountains have been extremely limited in extent. Limiting 14C dates from two sites within 1 km of contemporary glaciers of fresh terminal moraines indicate that the late Wisconsin Ice Sheet and valley glaciers disappeared prior to 9660 yr B.P. Two subsequent glacial advances are recognized. The earlier Crowfoot Advance is represented by moraines and rock-glacier deposits overlain by Mazama ash (6600 yr B.P.) and is therefore early Holocene or possibly late Wisconsin in age. The late Neoglacial Cavell Advance of the last few centuries is dated by dendrochronology and lichenometry. In addition, there is fragmentary, undated evidence of intermediate-age advance(s), mainly from rock-glacier deposits. All these advances were of limited extent (1–2 km beyond present ice margins) and the Cavell Advance was usually the most extensive. Major exceptions to this pattern occur only where rock glaciers or extensive ice-cored moraines developed during the earlier advance(s?). These deposits were not overrun by glaciers during the Cavell Advance because of their relatively greater downvalley extent and the physical barrier they presented to subsequent glacial advances. Earlier work which postulated more extensive early Holocene advances in the Canadian Rocky Mountains is shown to have inadequate dating control: Many of the features previously attributed to older Holocene events are late Wisconsin in age.  相似文献   

9.
The outermost moraines in front of the Scottbreen glacier in Spitsbergen date from c . AD 1900. These moraines rest on top of a marine shoreline radiocarbon-dated to about 11 200 14C yr BP and demonstrate that the AD-1900 moraines show the maximum glacier extent since late Allerød time. This means that Scottbreen was smaller during the Younger Dryas than at AD 1900, in contrast with glaciers on mainland western Europe, which were all much larger during the Younger Dryas. The explanation is probably starvation of precipitation on western Spitsbergen during the Younger Dryas. In contrast, ice sheets and glaciers in Spitsbergen reacted more or less in concert with glaciers in western Europe, during the global Last Glacial Maximum and the Little Ice Age.  相似文献   

10.
Three atomic mass spectrometry (AMS) dates have been obtained for shell material from the bottomset beds of a glaciomarine delta at Spencers Island, Nova Scotia, near the head of the Bay of Fundy. The sediments in the delta are part of the previously undated Five Islands Formation, and are the first direct indictaion of the age of deglaciation in this region. The dates range from 14,300 to 12,600 yr B.P. and record the duration of deposition of a diamicton under the deltaic deposits and of the delta itself. The diamicton may have formed around 14,000 yr B.P. under ice-shelf or calving-bay conditions, or by a readvance of grounded ice. The Spencers Island delta is part of a prominent ice-marginal stand marked by numerous deltas along the Minas Basin. The time of formation of the deltas and the inferred ice margin is between 13,500 and 12,000 yr B.P. based on the Spencers Island dates and palynologically confirmed dates on the base of lake-sediment cores from the delta surface. Ice-marginal glaciomarine deposits near St. John, New Brunswick, record a range of radiocarbon dates similar to the Spencers Island dates. This implies that the Bay of Fundy became virtually ice free about 14,000 yr B.P.  相似文献   

11.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

12.
Radiocarbon dated lacustrine sequences in Perú show that the chronology of glaciation during the late glacial in the tropical Andes was significantly out-of-phase with the record of climate change in the North Atlantic region. Fluvial incision of glacial-lake deposits in the Cordillera Blanca, central Perú, has exposed a glacial outwash gravel; radiocarbon dates from peat stratigraphically bounding the gravel imply that a glacier advance culminated between 11,280 and 10,990 14C yr B.P.; rapid ice recession followed. Similarly, in southern Perú, ice readvanced between 11,500 and 10,900 14C yr B.P. as shown by a basal radiocarbon date of 10,870 14C yr B.P. from a lake within 1 km of the Quelccaya Ice Cap. By 10,900 14C yr B.P. the ice front had retreated to nearly within its modern limits. Thus, glaciers in central and southern Perú advanced and retreated in near lockstep with one another. The Younger Dryas in the Peruvian Andes was apparently marked by retreating ice fronts in spite of the cool conditions that are inferred from the ∂18O record of Sajama ice. This retreat was apparently driven by reduced precipitation, which is consistent with interpretations of other paleoclimatic indicators from the region and which may have been a nonlinear response to steadily decreasing summer insolation.  相似文献   

13.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

15.
Younger Dryas cirque glaciers are known to have existed beyond the Scandinavian Ice Sheet in parts of western Norway. At Kråkenes, on the outermost coast, a cirque glacier formed and subsequently wasted away during the Younger Dryas. No glacier existed there during the Allerød. Large cirque moraines, some with marine deltas and associated fans, extend into the western part of Sykkylvsfjorden. Comparison with existing late-glacial sea-level curves shows that the uppermost marine sediment in these features was deposited well above Younger Dryas sea-level, demonstrating that the cirques were occupied by glaciers before the Younger Dryas. During the Younger Dryas the cirque glaciers expanded, and some advanced across the deltas, depositing till and supplying the sediment to form lower-level fans and deltas controlled by Younger Dryas sea level. The extent of the Younger Dryas advance of some of the glaciers was, at least in part, controlled by grounding on material deposited before the Younger Dryas. The depositional history of the glacial–marine deposits in the Sykkylven area indicates that cirque glaciers existed throughout Late-glacial time and only expanded during the Younger Dryas. The sediment sequence in glacial lakes beyond cirque moraines and reconstructions of glacier equilibrium lines indicate that this was true for most cirques in western Norway. Only on the outermost coast were new glaciers formed in response to Younger Dryas climate cooling. © 1998 John Wiley & Sons Ltd.  相似文献   

16.
Recent research based primarily on exposure ages of boulders on moraines has suggested that extensive ice masses persisted in fjords and across low ground in north‐west Scotland throughout the Lateglacial Interstade (≈ Greenland Interstade 1, ca. 14.7–12.9 ka), and that glacier ice was much more extensive in this area during the Older Dryas chronozone (ca. 14.0 ka) than during the Younger Dryas Stade (ca. 12.9–11.7 ka). We have recalibrated the same exposure age data using locally derived 10Be production rates. This increases the original mean ages by 6.5–12%, implying moraine deposition between ca. 14.3 and ca. 15.1 ka, and we infer a most probable age of ca. 14.7 ka based on palaeoclimatic considerations. The internal consistency of the ages implies that the dated moraines represent a single readvance of the ice margin (the Wester Ross Readvance). Pollen–stratigraphic evidence from a Lateglacial site at Loch Droma on the present drainage divide demonstrates deglaciation before ca. 14.0 ka, and therefore implies extensive deglaciation of all low ground and fjords in this area during the first half of the interstade (ca. 14.7–14.0 ka). This inference appears consistent with Lateglacial radiocarbon dates for shells recovered from glacimarine sediments and a dated tephra layer. Our revised chronology conflicts with earlier proposals that substantial dynamic ice caps persisted in Scotland between 14 and 13 ka, that large active glaciers probably survived throughout the Lateglacial Interstade and that ice extent was greater during the Older Dryas period than during the Younger Dryas Stade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

18.
This paper presents a revised glacial chronology for the Lahul Himalaya and provides the most detailed reconstruction of former glacier extents in the western Himalayas published to date. On the basis of detailed geomorphological mapping, morphostratigraphy, and absolute and relative dating, three glaciations and two glacial advances are constrained. The oldest glaciation (Chandra glacial stage) is represented by glacially eroded benches and drumlins (the first to be described from the Himalaya) at altitudes of >4300 m and indicates glaciation on a landscape of broad valleys that had minimal fluvial incision. The second glaciation (Batal glacial stage) is represented by highly weathered and disssected lateral moraines and drumlins representing two phases of glaciation within the Batal glacial stage (Batal I and Batal II). The Batal stage was an extensive valley glaciation interrupted by a readvance that produced superimposed bedforms. Optically stimulated luminescence (OSL) dating, indicates that glaciers probably started to retreat between 43400 ± 10300 and 36900 ± 8400 yr ago during the Batal stage. The Batal stage may be equivalent to marine Oxygen Isotope Stage 4 and early Oxygen Isotope Stage 3. The third glaciation (Kulti glacial stage), is represented by well-preserved moraines in the main tributary valleys that formed due to a less-extensive valley glaciation when ice advanced no more than 12 km from present ice margins. On the basis of an OSL age for deltaic sands and gravels that underlie tills of Kulti age, the Kulti glaciation is younger than 36900 ± 8400 yr ago. The development of peat bogs, having a basal age of 9160 ± 70 14C yr BP possibly represents a phase of climatic amelioration coincident with post-Kulti deglaciation. The Kulti glaciation, therefore, is probably equivalent to all or parts of late Oxygen Isotope Stage 3, Stage 2 and early Stage 1. Two minor advances (Sonapani I and II) are represented by small sharp-crested moraines within a few kilometres of glacier termini. On the basis of relative weathering, the Sonapani advance is possibly of early mid-Holocene age, whereas the Sonapani II advance is historical. The change in style and extent of glaciation is attributed to topographic controls produced by fluvial incision and by increasing aridity during the Quaternary. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

20.
Stratigraphic records from coastal cliff sections near the Marresale Station on the Yamal Peninsula, Russia, yield new insight on ice-sheet dynamics and paleoenvironments for northern Eurasia. Field studies identify nine informal stratigraphic units from oldest to youngest (the Marresale formation, Labsuyakha sand, Kara diamicton, Varjakha peat and silt, Oleny sand, Baidarata sand, Betula horizon, Nenets peat, and Chum sand) that show a single glaciation and a varied terrestrial environment during the late Pleistocene. The Kara diamicton reflects regional glaciation and is associated with glaciotectonic deformation from the southwest of the underlying Labsuyakha sand and Marresale formation. Finite radiocarbon and luminescence ages of ca. 35,000 to 45,000 yr from Varjakha peat and silt that immediately overlies Kara diamicton place the glaciation >40,000 yr ago. Eolian and fluvial deposition ensued with concomitant cryogenesis between ca. 35,000 and 12,000 cal yr B.P. associated with the Oleny and the Baidarata sands. There is no geomorphic or stratigraphic evidence of coverage or proximity of the Yamal Peninsula to a Late Weichselian ice sheet. The Nenets peat accumulated over the Baidarata sand during much of the past 10,000 yr, with local additions of the eolian Chum sand starting ca. 1000 yr ago. A prominent Betula horizon at the base of the Nenets peat contains rooted birch trees ca. 10,000 to 9000 cal yr old and indicates a >200-km shift northward of the treeline from the present limits, corresponding to a 2° to 4°C summer warming across northern Eurasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号