首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
应用生烃动力学方法研究库车坳陷烃源岩生烃史   总被引:7,自引:0,他引:7  
根据烃源岩生烃动力学参数,结合沉积埋藏史和古热史资料,本文应用生烃动力学方法研究了塔里木盆地库车坳陷三叠-侏罗纪烃源岩生烃史。研究表明,无论是煤,还是泥岩,库车坳陷三叠-侏罗纪烃源岩生气时间发生得晚,主生气期出现在10 Ma以来的喜山期晚期,生气高峰期出现在5 Ma之后。中上三叠世烃源岩生气时间和主生气期均早于中下侏罗世烃源岩。烃源岩这种晚期生气特征,为库车坳陷天然气的晚期聚集成藏提供了非常有利的烃源条件。   相似文献   

2.
Six petroleum source beds have been developed in the Kuche Depression (also known as “Kuqa Depression”) of the Tarim Basin, including three lacustrine source rocks (Middle and Upper Triassic Kelamayi and Huangshanjie formations, and Middle Jurassic Qiakemake Formation) and three coal measures (Upper Triassic Taliqike Formation, Lower Jurassic Yangxia Formation, and Middle Jurassic Kezilenuer Formation). While type I–II organic matter occurs in the Middle Jurassic Qiakemake Formation (J2q), other source beds contain dominantly type III organic matter. Gas generation rates and stable carbon isotopic kinetics of methane generation from representative source rocks collected in the Kuche Depression were measured and calculated using an on-line dry and open pyrolysis system. Combined with hydrocarbon generation history modelling, the formation and evolution processes of the Jurassic–Triassic highly efficient gas kitchens were established. High sedimentation rate in the Neogene and the fast deposition of the Kuche Formation within the Pliocene (5 Ma) in particular have led to the rapid increase in Mesozoic source rock maturity, resulting in significant dry gas generation. The extremely high gas generation rates from source kitchens have apparently expedited the formation of highly efficient gas accumulations in the Kuche Depression. Because different Mesozoic source rocks occur in different structural belts, the presence of both lacustrine and coaly gas kitchens during the Cenozoic time can be identified in the Kuche Depression. As shown by the chemical and stable carbon isotope compositions of the discovered gases, the formation of the giant gas pools in the Kela 2, Dina 2, Yaha and Wucan 1 have involved very different geological processes due to the difference in their gas source kitchens.  相似文献   

3.
Frontier exploration in the Kuqa Depression, western China, has identified the continuous tight-sand gas accumulation in the Lower Cretaceous and Lower Jurassic as a major unconventional gas pool. However, assessment of the shale gas resource in the Kuqa Depression is new. The shale succession in the Middle–Upper Triassic comprises the Taliqike Formation (T3t), the Huangshanjie Formation (T3h) and the middle–upper Karamay Formation (T2–3k), with an average accumulated thickness of 260 m. The high-quality shale is dominated by type III kerogen with high maturity and an average original total organic carbon (TOC) of about 2.68 wt%. An improved hydrocarbon generation and expulsion model was applied to this self-contained source–reservoir system to reveal the gas generation and expulsion (intensity, efficiency and volume) characteristics of Middle–Upper Triassic source rocks. The maximum volume of shale gas in the source rocks was obtained by determining the difference between generation and expulsion volumes. The results indicate that source rocks reached the hydrocarbon expulsion threshold of 1.1% VR and the hydrocarbon generation and expulsion reached their peak at 1.0% VR and 1.28% VR, with the maximum rate of 56 mg HC/0.1% TOC and 62.8 mg HC/0.1% TOC, respectively. The volumes of gas generation and expulsion from Middle–Upper Triassic source rocks were 12.02 × 1012 m3 and 5.98 × 1012 m3, respectively, with the residual volume of 6.04 × 1012 m3, giving an average gas expulsion efficiency of 44.38% and retention efficiency of 55.62%. Based on the gas generation and expulsion characteristics, the predicted shale gas potential volume is 6.04 × 1012 m3, indicating a significant shale gas resource in the Middle–Upper Triassic in the eastern Kuqa Depression.  相似文献   

4.
《China Geology》2019,2(2):133-141
Source rocks are the material basis of oil and gas generation and determine the potential resources of exploration blocks and have important research value. This paper studies the lithology, thickness, and geochemistry of Mesozoic source rocks in the southeastern East China Sea continental shelf. The results show that the Mesozoic source rocks are mainly dark mudstone and coal-bearing strata. The total thickness of Lower–Middle Jurassic source rocks ranges from 100 m to 700 m, and that of Lower Cretaceous source rocks ranges from 50 m to 350 m. The overall thickness of Mesozoic source rocks is distributed in the NE direction and their thickness center is located in the Jilong Depression. The Lower–Middle Jurassic source rocks are mainly developed shallow marine dark mudstone and transitional coal measure strata. Those of the Lower Cretaceous are mainly mudstone of a fan delta front. Lower–Middle Jurassic and Lower Cretaceous hydrocarbon source rocks are dominated by type III kerogen, with Lower–Middle Jurassic hydrocarbon source rocks having high organic matter abundance and being medium–good hydrocarbon source rocks, while Lower Cretaceous hydrocarbon source rocks have relatively poor quality. From northwest to southeast, the vitrinite reflectance Ro of Mesozoic source rocks increases gradually. Source rocks in the study area are divided into three types. The first hydrocarbon-generating area is mainly located in the southeastern region of the study area, and the Jilong Depression is the hydrocarbon-generating center. The results of this study can provide a basis for exploration of Mesozoic oil and gas resources in the southeastern East China Sea continental shelf.© 2019 China Geology Editorial Office.  相似文献   

5.
通过有压力的黄金管封闭体系生烃模拟实验和GC-IRMS测定,结合GOR-Isotope Kinetics专用软件,求取了塔里木盆地库车坳陷三叠系-侏罗系烃源岩生成甲烷的碳同位素动力学参数。结合地质背景,探讨了克拉2气田天然气的成因。克拉2气田天然气主要来源于早中侏罗世煤系烃源岩,属阶段捕获气,为-5Ma以来的天然气聚集,对应成熟度范围Ro为1.3%-2.5%。在此基础上,建立了克拉2气田天然气运聚成藏动力学模式,从而为天然气定量评价和动态研究提供了新思路。  相似文献   

6.
In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from Triassic-Jurassic hydrocarbon source rocks in the Kuqa depression of Tarim Basin are obtained. The activation energies of methane generated from Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression are 197-268 kJ/mol, 180-260 kJ/mol and 214-289 kJ/mol, respectively, and their frequency factors are 5.265×10^13 s^-1, 9.761×10^11 s^-1 and 2.270×10^14 s^-1. This reflects their differences of hydrocarbon generation behaviors. The kinetic parameters of methane carbon isotopic fractionation are also different in Jurassic coal, Jurassic mudstone and Triassic mudstone, whose average activation energies are 228 kJ/mol, 205 kJ/mol and 231 kJ/mol, respectively. Combined with the geological background, the origin of natural gas in the Yinan-2 gas pool is discussed, and an accumulation model of natural gas is thus established. The Yinan- 2 gas is primarily derived from Jurassic coal-bearing source rocks in the Yangxia Sag. Main gas accumulation time is 5-0 Ma and the corresponding Ro is in the range from 1.25 %-1.95 %. The loss rate of natural gas is 25 %-30 %.  相似文献   

7.
库车坳陷三叠-侏罗纪烃源岩生气特征与生气模式   总被引:1,自引:0,他引:1  
根据热解实验和动力学模拟计算结果,研究了塔里木盆地库车坳陷侏罗纪煤、煤系泥岩及三叠纪泥岩的生气特征与生气模式。结果表明,库车坳陷三叠-侏罗纪烃源岩具有良好的生气性,尤其在进入中、高热演化阶段,甲烷产率更高,且侏罗纪煤和煤系泥岩的甲烷产率要高于三叠纪泥岩。侏罗纪和三叠纪烃源岩均以生气为主,是库车坳陷的有效气源岩,但前者的生气贡献明显高于后者。   相似文献   

8.
塔里木盆地库车坳陷中生界烃源岩生烃动力学参数研究   总被引:6,自引:4,他引:2  
根据封闭体系黄金管热模拟实验结果,应用Kinetics专用软件,研究了塔里木盆地库车坳陷中生界不同类型烃源岩的生烃特征与动力学参数。库车坳陷侏罗系煤、碳质泥岩、泥岩及三叠系湖相泥岩具有各自的活化能分布和频率因子,揭示出其生烃行为的差异性。利用GOR-IsotopeKinetics软件,推导了库车坳陷侏罗系煤、泥岩和三叠系湖相泥岩3类烃源岩的碳同位素动力学参数。上述参数的获取,为盆地模拟、烃源岩评价、生烃量计算及资源量预测提供了重要的基础地球化学数据。   相似文献   

9.
Middle–Lower Jurassic terrigenous shales constitute a set of significant hydrocarbon source rocks in the Kuqa Depression of the Tarim Basin. Until recently, however, most investigations regarding this set of hydrocarbon source rocks have mainly focused on conventional oil and gas reservoirs, and little research has been conducted on the formation conditions of shale gases. This research, which is based on core samples from nine wells in the Kuqa Depression, investigated the geological, geochemical, mineralogical and porosity characteristics of the shales, analysed the geological and geochemical conditions for the formation of shale gases, and evaluated the shale gas resource potential. The results show that the distribution of the Middle–Lower Jurassic shales is broad, with thicknesses reaching up to 300–500 km. The total organic carbon (TOC) content is relatively high, ranging from 0.2 to 13.5 wt% with a mean of 2.7 wt%. The remaining hydrocarbon generative potential is between 0.1 and 22.34 mg/g, with a large range of variation and a mean value of 3.98 mg/g. It is dominated by type III kerogen with the presence of minor type II1 kerogen. The vitrinite reflectance values range from 0.517 to 1.572%, indicating the shales are in a mature or highly mature stage. The shales are mainly composed of quartz (19–76%), clay (18–68%) and plagioclase (1–10%) with mean contents of 50.36 wt%, 41.42 wt%, and 3.37 wt%, respectively. The pore spaces are completely dominated by primary porosity, secondary porosity and microfractures. The porosity is less than 10% and is mainly between 0.5 and 4%, and the permeability is generally less than 0.1 mD. These results classify the shale as a low-porosity and ultra-low-permeability reservoir. The porosity has no obvious correlation with the brittle or clay mineral contents, but it is significantly positively correlated with the TOC content. The maximum adsorbed gas content is between 0.82 and 8.52 m3/t with a mean of 3.37 m3/t. In general, the shale gas adsorption content increases with increasing the TOC content, especially when the TOC content is greater than 1.0%. The volumetric method, used to calculate the geological resources of the Middle–Lower Jurassic shales in the Kuqa Depression, shows that the geological resources of the Middle and Lower Jurassic shales reach 667.681 and 988.115 × 109 m3, respectively with good conditions for the formation of shale gas and good prospects for shale gas exploration.  相似文献   

10.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

11.
《China Geology》2020,3(4):623-632
North Carnarvon Basin is a gas province with minor oily sweet spots in deepwater area with water depth more than 500 m, which is one of the hot spots of global petroleum exploration for its series of giant hydrocarbon discoveries in recent years. However, the degree of oil and gas exploration in deepwater area is still low, and the conditions for oil and gas accumulation are not clear. Based on the current exploration situation and latest database of fields, applying multidisciplinary analysis of hydrocarbon geology, hydrocarbon accumulation elements and its exploration direction of North Carnarvon Basin in deepwater area are analyzed. The results show that there are three sets of main source rocks in deepwater area of North Carnarvon Basin, which are Triassic marine shale in Locker Formation and delta coal-bearing mudstone with thin carbonaceous mudstone in Mungaroo Formation, Lower –Middle Jurassic paralic carbargilite and coal measure strata in Athol Formation and Murat Formation, Cretaceous delta mudstone in Barrow Group and marine shale in Muderong Formation. Most source rock samples show gas-prone capability. The coarse sandstone of delta facies in Middle–Upper Triassic Mungaroo Formation is the most important reservoir in deepwater area, Lower Cretaceous Barrow Group deep-water gravity flow or underwater fan turbidite sandstone is the secondly main reservoir. Lower Cretaceous marine shale in Muderong Formation is most important regional caprock. Triassic mudstone in Mungaroo Formation is an important interlayer caprock in deepwater area. There are two main reservoir accumulation assemblages in deepwater area, one is Triassic structural-unconformity plane reservoir accumulation assemblage of Locker Formation to Mungaroo Formation, and the other is Lower–Middle Jurassic Athol Formation and Murat Formation–Lower Cretaceous stratigraphic lithology-structural reservoir accumulation assemblage of Barrow Group to Muderong Formation. There are three main control factors of hydrocarbon Accumulation: One is coupling of source and seal control hydrocarbon distribution area, the second is multi-stage large wave dominated deltas dominate accumulation zone, the third is direction of hydrocarbon migration and accumulation in hydrocarbon-rich generation depression was controlled by overpressure. The south of Exmouth platform in deepwater area is adjacent to hydrocarbon rich depression zone, reservoir assemblage is characterized by “near source rocks, excellent reservoir facies, high position and excellent caprocks ”, which is the main battlefield of deepwater oil and gas exploration in North Carnarvon Basin at present. There are a lot of fault block traps in the northern structural belt of Exmouth platform, and the favorable sedimentary facies belt at the far end of delta plain in Mungaroo Formation is widely distributed, which is the next favorable exploration zone. The Lower Cretaceous, which is located at the concave edge uplift adjacent to the investigator depression and the Exmouth platform, also has a certain exploration prospect in northwest of deepwater area.  相似文献   

12.
<正>The Kuqa foreland basin is an important petroliferous basin where gas predominates.The Kela-2 large natural gas reservoir and the Yinan-2,Dabei-1,Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present.Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes.The former is derived from both Jurassic and Triassic source rocks,while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin,the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment.The heavier carbon isotope composition and the high natural gas ratio of C_1/C_(1-4) indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages.Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.  相似文献   

13.
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C_(15)–n C_(19)), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C_(29) C_(27) C_(28), gammacerane/C_(30) hopane ratios of 0.15–0.32, and δD_(org) of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.  相似文献   

14.
祁连山木里地区侏罗系窑街组烃源岩生烃潜力评价   总被引:1,自引:0,他引:1  
祁连山木里坳陷侏罗系窑街组煤系泥岩和煤有机质丰度、有机质类型和有机质成熟度分析结果表明, 窑街组煤系泥岩为好的烃源岩, 有机质类型为Ⅱ1型, 处于成熟阶段, 以生油为主, 生气为辅; 煤为差等烃源岩, 有机质类型为Ⅲ型, 处于成熟阶段, 富氢基质镜质体含量高, 具有一定的生烃潜力。综合其它层位烃源岩分析结果, 认为窑街组煤系泥岩和晚三叠世尕勒得寺组湖相泥岩为祁连山木里地区天然气水合物的主要气源岩。   相似文献   

15.
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%–98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5~(th) member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4~(th) member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3~(rd) and 4~(th) members of the Xujiahe Formation. The gases reservoired in the 2~(nd) member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4~(th) member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.  相似文献   

16.
柴达木盆地北缘地区在中侏罗世晚期,即大煤沟组七段(J2d7)时演化至最大湖侵期,发育了一套湖相泥页岩。通过对区内鱼卡煤矿井下样品的实测分析,结合先前报道的研究成果,确认了这套湖相泥页岩为优质烃源岩,藻类体、角质体和孢子体是这套源岩的主要生烃显微组分,有机质类型最好可达II1型。热演化研究表明,该套源岩在不同构造单元处于差异热演化阶段,既可生油亦可生气。虽然J2d7段烃源岩在平面上不同凹陷区具有一定的非均质性,但其生烃潜力,特别是在赛什腾—鱼卡凹陷地区,完全可与我国西北地区其它侏罗系优质烃源岩相媲美。长期以来,下侏罗统烃源岩被认为是柴北缘地区的主要油气源,J2d7段优质烃源岩的确认,对于深化柴北缘地区的油气勘探和地质研究具有重要意义。  相似文献   

17.
Oil and gas exploration in eastern Tarim Basin, NW China has been successful in recent years, with several commercial gas accumulations being discovered in a thermally mature to over-mature region. The Yingnan2 (YN2) gas field, situated in the Yingnan structure of the Yingjisu Depression, produces gases that are relatively enriched in nitrogen and C2+ alkanes. The δ13C1 (−38.6‰ to −36.2‰) and δ13C2 values (−30.9‰ to −34.7‰) of these gases are characteristic of marine sourced gases with relatively high maturity levels. The distributions of biomarkers in the associated condensates suggest close affinities with the Cambrian–Lower Ordovician source rocks which, in the Yingjisu Sag, are currently over-mature (with 3–4%Ro). Burial and thermal maturity modeling results indicate that paleo-temperatures of the Cambrian–Lower Ordovician source rocks had increased from 90 to 210 °C during the late Caledonian orogeny (458–438 Ma), due to rapid subsidence and sediment loading. By the end of Ordovician, hydrocarbon potential in these source rocks had been largely exhausted. The homogenization temperatures of hydrocarbon fluid inclusions identified from the Jurassic reservoirs of the YN2 gas field suggest a hydrocarbon emplacement time as recent as about 10 Ma, when the maturity levels of Middle–Lower Jurassic source rocks in the study area were too low (<0.7%Ro) to form a large quantity of oil and gas. The presence of abundant diamondoid hydrocarbons in the associated condensates and the relatively heavy isotopic values of the oils indicate that the gases were derived from thermal cracking of early-formed oils. Estimation from the stable carbon isotope ratios of gaseous alkanes suggests that the gases may have been formed at temperatures well above 190 °C. Thus, the oil and gas accumulation history in the study area can be reconstructed as follows: (1) during the late Caledonian orogeny, the Cambrian–Lower Ordovician marine source rocks had gone through the peak oil, wet gas and dry gas generation stages, with the generated oil and gas migrating upwards along faults and fractures to form early oil and gas accumulations in the Middle–Upper Ordovician and Silurian sandstone reservoirs; (2) since the late Yanshanian orogeny, the early oil accumulations have been buried deeper and oil has undergone thermal cracking to form gas; (3) during the late Himalayan orogeny, the seals for the deep reservoirs were breached; and the gas and condensates migrated upward and eventually accumulating in the relatively shallow Jurassic reservoirs.  相似文献   

18.
柴北缘侏罗系烃源岩地球化学特征及其综合评价   总被引:11,自引:4,他引:7  
通过对柴达木盆地北缘侏罗系烃源岩有机质丰度及其类型的研究,以及对柴北缘烃源岩成熟度和柴北缘热演化史的分析,综合评价了烃源岩的生烃潜力。主要结论是:①柴北缘主要烃源岩下侏罗统暗色深水湖相泥岩和下侏罗统的煤岩,可分为Ⅱ、Ⅲ1和Ⅲ2型;②中、下侏罗统烃源岩大多数已超过成熟阶段。下侏罗统在E3-N2时期进入生排烃高峰期,中侏罗统则在N2进入生排烃阶段;③柴北缘下侏罗统为一套好的烃源岩,生气强度达到大中型油气田的规模。中侏罗统为一套中等的源岩层,生气强度中等,具备形成大中型气田的气源条件。  相似文献   

19.
根据沉积充填与沉积演化分析,昌都盆地中生代为一个叠合型盆地,晚三叠世为一个陆内断陷盆地,经历了断陷期-坳陷期-萎缩期,侏罗纪为一个受东、西两侧造山带挤压而形成的山间坳陷盆地。喜山期,昌都盆地经历了强烈的改造。昌都盆地存在3套烃源岩,即阿堵拉组和夺盖拉组潟湖相泥岩和沼泽相含煤岩系、中侏罗统东大桥组深湖相泥岩和灰岩; 4套储集岩,即甲丕拉组河流相碎屑岩、阿都拉和夺盖拉组滨岸相和三角洲相碎屑岩、波里拉组颗粒灰岩和白云岩。有利油气构造均形成于侏罗纪末,与三叠系的生油阶段基本吻合,可形成较好的油气成藏,其中昌都-察雅香堆为最有利油气远景区。  相似文献   

20.
从烃源岩特征、天然气组分、油气碳同位素、凝析油全烃和轻烃、储层沥青等方面对营山地区上三叠统和中、下侏罗统油气源特征进行了对比研究,阐明了营山地区上三叠统须家河组和中、下侏罗统油气的地球化学特征、成因和可能来源。研究表明营山地区上三叠统须家河组油气主要来自须家河组自身的煤系烃源岩,天然气以成熟腐殖型母质成因为主,而中、下侏罗统气藏产出的油气主要来自其自身的烃源岩。营山地区构造活动强烈,断层发育,使得部分井区中、下侏罗统产出的天然气特征与下伏产层极为相似,反映了断层对该井区附近的各层段有一定的沟通作用。中、下侏罗统地层在部分井区可能有上三叠统须家河组油气的侵入,须家河组烃源岩对中、下侏罗统油气成藏有一定贡献作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号