首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The western part of Yemen is largely covered by Tertiary volcanics and is bounded by volcanic margins to the west (Red Sea) and the south (Gulf of Aden). The Oligo–Miocene evolution of Yemen results from the interaction between the emplacement of the Afar plume, the opening of the Red Sea, and the westward propagation of the Gulf of Aden. Structural and microtectonic analyses of fault slip data collected in the field reveal that the volcanic margins of Yemen are affected by three main extensional tectonic events. The chronological order of these events is as follows: first E–W extension was associated with the emplacement of volcanic traps of Yemen, then NE–SW extension was related to the Red Sea rifting, and finally, the volcanic margin was submitted to N160°E extension, perpendicular to the overall trend of the Gulf of Aden, which we interpret as induced by the westward propagation of the oceanic ridge of the Gulf of Aden.  相似文献   

2.
The North Penninic basin was a subbasin in the northern part of the Mesozoic Tethys ocean. Its significance within the framework of this ocean is controversial because it is not clear whether it was underlain by thinned continental or oceanic crust. Remnants of the eastern North Penninic basin are preserved in the Alps of eastern Switzerland (Grisons) as low metamorphic "Bündnerschiefer" sediments and associated basaltic rocks which formed approximately 140–170 Ma ago (Misox Bündnerschiefer zone, Middle Jurassic to Early Cretaceous). Nb/U, Zr/Nb, and Y/Nb ratios, as well as Nd–Sr isotopic and REE data of most of the metabasalts point to a depleted MORB-type mantle origin. They have been contaminated by magmatic assimilation of Bündnerschiefer sediments and by exchange with seawater, but do not prove the existence of a subcontinental lithospheric mantle or continental crust beneath the North Penninic basin. This suggests that the studied part of the North Penninic realm was underlain by oceanic crust. Only the metabasalts from two melange zones (Vals and Grava melanges) show a more important contamination by crustal material. Since this type of contamination cannot be observed in the other tectonic units, we suggest that its occurrence is related to melange formation during the subduction of the North Penninic basin in the Tertiary. The North Penninic basin was probably, despite the occurrence of oceanic crust, smaller than the South Penninic ocean where the presence of oceanic crust is well established. Modern analogues for the North Penninic basin could be the transitional zone of the Red Sea or the pull-apart basins of the southernmost Gulf of California where local patches of oceanic crust with effusive volcanism have been described.  相似文献   

3.
A combination of palaeomagnetic, seismological, gravitational, aeromagnetic and geochemical observations, as well as geological and regional considerations are strongly indicative of anticlockwise rotational movements of the Danakil Alps and formation of new oceanic crust in the Northern Afar Triangle. The decreasing amount of spreading in the Southern Red Sea is compensated by en chelon crustal spreading (formation of oceanic crust in a continental environment) in the Danakil-Afar Depression. Here, the geophysical properties are generally intermediate between the more typical continental (Ethiopia) and oceanic (Red Sea, Gulf of Aden) data. Such intermediate type crust is proposed to be caused by “oceanization” of formerly continental crust, i. e. fragmentation and basification through massive dyke injections (mantle diapirism). The structure and evolution of the wider Afar Triangle, East-African Rift System, Red Sea and Gulf of Aden are used to derive a model for possible stages during initial continental break-up and compared with selected, similarly structured parts of the n-Atlantik. The continental break-up probably develops in the following stages: 1. general uplift associated with surface fracturing above an asthenospheric diapir (uplift), 2. development of linear “Scheitel”-Grabensystems along the crest of the uplift or uplift chains (rupture), 3. graben with (contaminated) volcanism stage (volcanism), 4. “oceanization” of the developing depression through fragmentation and basification by massive oceanic and/or contaminated dyke-injections of the former continental crust along several sporadically active lineaments, 5. “crustal spreading” on land or concentration of mantle derived, oceanic crust-injections along one major lineament in a dry, continental environment, 6. “evaporit-stage of sea-floor spreading” with sporadic seawater connections to an open marine basin and 7. “ocean-floor spreading” in the deep-sea environment of advanced oceanic troughs. The derivation of these stages basically involves the addition of “sea-floor spreading” processes (oceanization, crustal-, sea- and ocean-floor spreading) to the well known sequence: Hebung — Spaltung — Vulkanismus (Cloos, 1939) and relate it to mantle-diapirism processes. All the above stages are recognizable along the Afro-Arabian Rifts and seem to have morphological equivalents in the Atlantic.  相似文献   

4.
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea.Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust.A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives.The Mohorovičić discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth.The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea.  相似文献   

5.
论南沙海槽的地壳性质   总被引:10,自引:0,他引:10       下载免费PDF全文
苏达权  黄慈流 《地质科学》1996,31(4):409-415
根据海上地球物理测量,对四条剖面的重力和地震剖面资料进行联合正反演推算,结合已发表的国内外地质、地球物理资料对南沙海槽的地壳厚度及性质进行了分析。结果表明,南沙海槽的地壳为一个减薄的陆壳,从南沙微陆块向婆罗洲方向厚度减薄,具有类似大陆边缘从陆壳向洋壳过渡部位的地壳构造特征。顺着海槽的走向,地壳厚度变化趋势是从东北向西南变薄。从构造演化的角度分析,南沙海槽是古南海洋陆交界的边缘,由于古南海的闭合及晚白垩世以后婆罗洲逆时针方向旋转,海槽的大部分是陆壳,其西南端可能有残留的洋壳。  相似文献   

6.
A number of basins are observed to extend inland from the coasts on both sides of the Gulf of Aden. The basins are orientated at approximately right angles to the spreading direction and intersect the coasts at the meeting of sheared and rifted continental margins. They appear to be grabens, one wall of which is continuous with the half graben of the neighbouring rifted margin. It is suggested that these were once parts of a number of discrete rifts arranged en-echelon along a zone of lithospheric weakness during the early opening of the Gulf of Aden, which became redundant when transform faults formed. The proposed development of rifts and transform faults is similar to that of a spreading centre, transform fault, spreading centre pattern developed in the freezing wax model of Oldenburg and Brune (1975). The Gulf of Suez at the northern end of the Red Sea is interpreted in a similar way since it has a number of features in common with the basins in the continents adjacent to the Gulf of Aden.  相似文献   

7.
In February 1978 seismic-refraction profiles were recorded by the U.S. Geological Survey along a 1000 km line across the Arabian Shield in western Saudi Arabia. This report presents a traveltime and relative amplitude study in the form of velocity-depth functions for each individual profile assuming horizontally flat layering. The corresponding cross section of the lithosphere showing lines of equal velocity reaches to a depth of 60–80 km.The crust thickens abruptly from 15 km beneath the Red Sea Rift to about 40 km beneath the Arabian Shield. The upper crust of the western Arabian Shield yields relatively high-velocity material at about 10 km depth underlain by velocity inversions, while the upper crust of the eastern Shield is relatively uniform. The lower crust with a velocity of about 7 km/s is underlain by a transitional crust-mantle boundary. For the lower lithosphere beneath 40 km depth the data indicate the existence of a laterally discontinuous lamellar structure where high-velocity zones are intermixed with zones of lower velocities. Beneath the crust-mantle boundary of the Red Sea rift most probably strong velocity inversions exist. Here, the data do not allow a detailed modelling, velocities as low as 6.0 km/s seem to be encountered between 25 and 44 km depth.  相似文献   

8.
The Dead Sea rift is considered to be a plate boundary of the transform type. Several key questions regarding its structure and evolution are: Does sea floor spreading activity propagate from the Red Sea into the Dead Sea rift? Did rifting activity start simultaneously along the entire length of the Dead Sea rift, or did it propagate from several centres? Why did the initial propagation of the Red Sea into the Gulf of Suez stop and an opening of the Gulf of Elat start?

Using crustal structure data from north Africa and the eastern Mediterranean and approximating the deformation of the lithosphere by a deformation of a multilayer thin sheet that overlies an inviscid half-space, the regional stress field in this region was calculated. Using this approach it is possible to take into account variations of lithospheric thickness and the transition from a continental to an oceanic crust. By application of a strain-dependent visco-elastic model of a solid with damage it is possible to describe the process of creation and evolution of narrow zones of strain rate localization, corresponding to the high value of the damage parameter i.e. fault zones.

Mathematical simulation of the plate motion and faulting process suggests that the Dead Sea rift was created as a result of a simultaneous propagation of two different transforms. One propagated from the Red Sea through the Gulf of Elat to the north. The other transform started at the collision zone in Turkey and propagated to the south.  相似文献   


9.
The Arabian Plate is important and unique in many ways. The worker wants to highlight the important features characterizing the Arabian Plate. It is a unique fit of the earth's surface jig saw puzzle, different than all other lithospheric plates. It has the three known main tectonic plate boundaries, divergent, convergent and conservative ones. These boundaries are the Red Sea and Gulf of Aden, Zagros-Taurus and Dead Sea, respectively. It has three main well-defined and sharp plate boundaries, and it is surrounded by three major plates, African, Eurasian and Indian plates. The Red Sea and Gulf of Aden form the divergent boundary and spreading center. The Dead Sea Transform Fault (the Gulf of Aqaba Transform Fault) represents the conservative boundary and transform fault system. The Zagros-Taurus Thrust (Zagros-Taurus-Bitlis Thrust and Fold Belt) represents the convergent boundary and collision zone. The Arabian Plate incorporates a wide range and variety and subvariety of all three rock types, igneous, metamorphic and sedimentary rocks, this in addition to all kinds of structures. Among these are folding with major fold belts, faulting, foliation, lineation and diapirism. Transform, transcurrent, normal, graben, reverse, thrust faults are all represented one way or another. The tectonics of the Arabian shield, which forms a major part of the Arabian Plate, has long tectonic history prior to the formation of the Red Sea. After the opening and formation of the latter, the tectonics of the Arabian shield became affected and controlled by its tectonics. The Arabian Plate includes the Arabian Platform which has a relatively different setting of tectonics represented by the Central Arabian Graben. The Arabian Plate contains one of the best representative outcropped ophiolite sequences in the world. The Arabian Plate most importantly incorporates most of world oil reserve. Seismic and volcanic activities are also manifested and affected many areas in the Arabian Plate.  相似文献   

10.
The seasonal cycle of temperature—salinity variations in the Bab el Mandab region (southern Red Sea) is described using CTD data collected during four cruises spread over the period May 1995—August 1997. A two layer system exists during early summer, winter and spring while a three layer system exists during summer. During summer, a large amount of the Gulf of Aden water intrudes into the Bab el Mandab region; up to the northern limit (14.5‡N). The quantity of Red Sea water that flows into the Gulf of Aden is maximum during the winter and minimum during the summer  相似文献   

11.
The origin of the Benue trough has been a controversial subject. Previous workers in the area have evolved several theories ranging from a rift, with or without plate tectonic concepts (King, 1950; Wright, 1968, 1970; Burke et al., 1970; Grant, 1971; Olade, 1975) to a geosyncline (Lees, 1952) and a combination of both (Cratchley and Jones, 1965; Offodile, 1976) to explain the origin of the trough. One of the aims of the gravity survey, carried out in the middle Benue and discussed in this paper, was to attempt to resolve some of the problems associated with the origin of the trough as proposed by previous workers and in so doing to explain the geological peculiarities associated with the trough.

Interpretations of the gravity data along two north—south profiles in the survey area indicated the existence of a rift, of normal width (about 40 km) buried under the Cretaceous cover and located between the central axis (ridge) of the trough and the northern boundary of the trough. The gravity minimum which occurs south of the central axis of the trough, was also ascribed to another rift. Thus the Benue trough is considered to consist of two parallel rifts separated by the axial ridge which partly explains the abnormal width of the trough. The interpreted models also indicate a low-angle thrust fault, with a small displacement, which may be related to the folding of the sediments in the trough and also to the asymmetry of the trough. Furthermore, the gravity data suggest that oceanic crust might not have reached the ground surface in the Benue trough, as in the Red Sea, before rifting ceased.  相似文献   


12.
This paper describes the updated stratigraphy, structural framework and evolution, and hydrocarbon prospectivity of the Paleozoic, Mesozoic and Cenozoic basins of Yemen, depicted also on regional stratigraphic charts. The Paleozoic basins include (1) the Rub’ Al-Khali basin (southern flanks), bounded to the south by the Hadramawt arch (oriented approximately W–E) towards which the Paleozoic and Mesozoic sediments pinch out; (2) the San’a basin, encompassing Paleozoic through Upper Jurassic sediments; and (3) the southern offshore Suqatra (island) basin filled with Permo-Triassic sediments correlatable with that of the Karoo rift in Africa. The Mesozoic rift basins formed due to the breakup of Gondwana and separation of India/Madagascar from Africa–Arabia during the Late Jurassic/Early Cretaceous. The five Mesozoic sedimentary rift basins reflect in their orientation an inheritance from deep-seated, reactivated NW–SE trending Infracambrian Najd fault system. These basins formed sequentially from west to east–southeast, sub-parallel with rift orientations—NNW–SSE for the Siham-Ad-Dali’ basin in the west, NW–SE for the Sab’atayn and Balhaf basins and WNW–ESE for the Say’un-Masilah basin in the centre, and almost E–W for the Jiza’–Qamar basin located in the east of Yemen. The Sab’atayn and Say’un–Masilah basins are the only ones producing oil and gas so far. Petroleum reservoirs in both basins have been charged from Upper Jurassic Madbi shale. The main reservoirs in the Sab’atayn basin include sandstone units in the Sab’atayn Formation (Tithonian), the turbiditic sandstones of the Lam Member (Tithonian) and the Proterozoic fractured basement (upthrown fault block), while the main reservoirs in the Say’un–Masilah basin are sandstones of the Qishn Clastics Member (Hauterivian/Barremian) and the Ghayl Member (Berriasian/Valanginian), and Proterozoic fractured basement. The Cenozoic rift basins are related to the separation of Arabia from Africa by the opening of the Red Sea to the west and the Gulf of Aden to the south of Yemen during the Oligocene-Recent. These basins are filled with up to 3,000 m of sediments showing both lateral and vertical facies changes. The Cenozoic rift basins along the Gulf of Aden include the Mukalla–Sayhut, the Hawrah–Ahwar and the Aden–Abyan basins (all trending ENE–WSW), and have both offshore and onshore sectors as extensional faulting and regional subsidence affected the southern margin of Yemen episodically. Seafloor spreading in the Gulf of Aden dates back to the Early Miocene. Many of the offshore wells drilled in the Mukalla–Sayhut basin have encountered oil shows in the Cretaceous through Neogene layers. Sub-commercial discovery was identified in Sharmah-1 well in the fractured Middle Eocene limestone of the Habshiyah Formation. The Tihamah basin along the NNW–SSE trending Red Sea commenced in Late Oligocene, with oceanic crust formation in the earliest Pliocene. The Late Miocene stratigraphy of the Red Sea offshore Yemen is dominated by salt deformation. Oil and gas seeps are found in the Tihamah basin including the As-Salif peninsula and the onshore Tihamah plain; and oil and gas shows encountered in several onshore and offshore wells indicate the presence of proven source rocks in this basin.  相似文献   

13.
The previously published results of a deep seismic refraction study of the Dead Sea—Gulf of Elat rift show crustal thinning underneath the rift and the presence of a 5 km thick velocity transition zone in the lower crust along the rift. The structural interpretation of the first-arrival data was revised using the detailed velocity-depth distribution.The revised crustal thicknesses are 35 km near Elat and 27 km, 160 km south of Elat.The crustal thinning and the presence of the velocity transition zone are interpreted as being the result of intrusion of upper mantle material into the lower crust, possibly representing the initial shape of the processes which have been active further south in the Red Sea since earlier times.  相似文献   

14.
New deep reflection seismic, bathymetry, gravity and magnetic data have been acquired in a marine geophysical survey of the southern South China Sea, including the Dangerous Grounds, Northwest Borneo Trough and the Central Luconia Platform. The seismic and bathymetry data map the topography of shallow density interfaces, allowing the application of gravity modeling to delineate the thickness and composition of the deeper crustal layers. Many of the strongest gravity anomalies across the area are accounted for by the basement topography mapped in the seismic data, with substantial basement relief associated with major rift development. The total crustal thickness is however quite constant, with variations only between 25 and 30 km across the Central Luconia Platform and Dangerous Grounds. The Northwest Borneo Trough is underlain by thinned crust (25–20 km total crustal thickness) consistent with the substantial water depths. There is no evidence of any crustal suture associated with the trough, nor any evidence of relict oceanic crust beneath the trough. The crustal thinning also does not extend along the complete length of the trough, with crustal thicknesses of 25 km and more modeled on the most easterly lines to cross the trough. Modeled magnetic field variations are also consistent with the study area being underlain by continental crust, with the magnetic field variations well explained by irregular magnetisations consistent with inhomogeneous continental crust, terminating at the basement unconformity as mapped from the seismic data.  相似文献   

15.
The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene “trap” volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.  相似文献   

16.
洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.   相似文献   

17.
This article outlines geomorphological and tectonic elements of the Afar Depression, and discusses its evolution. A combination of far-field stress, due to the convergence of the Eurasian and Arabian plates along the Zagros Orogenic Front, and uplift of the Afar Dome due to a rising mantle plume reinforced each other to break the lithosphere of the Arabian–Nubian Shield. Thermal anomalies beneath the Arabian–Nubian Shield in the range of 150 °C–200 °C, induced by a rising plume that mechanically and thermally eroded the base of the mantle lithosphere and generated pulses of prodigious flood basalt since ∼30 Ma. Subsequent to the stretching and thinning the Afar Dome subsided to form the Afar Depression. The fragmentation of the Arabian–Nubian Shield led to the separation of the Nubian, Arabian and Somalian Plates along the Gulf of Aden, the Red Sea and the Main Ethiopian Rift. The rotation of the intervening Danakil, East-Central, and Ali-Sabieh Blocks defined major structural trends in the Afar Depression. The Danakil Block severed from the Nubian plate at ∼20 Ma, rotated anti-clockwise, translated from lower latitude and successively moved north, left-laterally with respect to Nubia. The westward propagating Gulf of Aden rift breached the Danakil Block from the Ali-Sabieh Block at ∼2 Ma and proceeded along the Gulf of Tajura into the Afar Depression. The propagation and overlap of the Red Sea and the Gulf of Aden along the Manda Hararo–Gobaad and Asal–Manda Inakir rifts caused clockwise rotation of the East-Central Block. Faulting and rifting in the southern Red Sea, western Gulf of Aden and northern Main Ethiopian Rift superimposed on Afar. The Afar Depression initiated as diffused extension due to far-field stress and area increase over a dome elevated by a rising plume. With time, the lithospheric extension intensified, nucleated in weak zones, and developed into incipient spreading centers.  相似文献   

18.
An interpretation of deep seismic sounding measurements across the ocean-continent transition of the Red Sea-Saudi Arabian Shield is presented. Using synthetic seismograms based on ray tracing we achieve a good fit to observed traveltimes and some of the characteristic amplitudes of the record sections. Crustal thickness varies along the profile from 15 km in the Red Sea Shelf to 40–45 km beneath the Asir Mountains and the Saudi Arabian Shield. Based on the computation of synthetic seismograms our model requires a velocity inversion in the Red Sea-Arabian Shield transition. High-velocity oceanic mantle material is observed above continental crust and mantle, thereby forming a double-layered Moho. Our results indicate a thick sedimentary basin in the shelf area, and zone of high velocities within the Asir Mountains (probably uplifted lower crust). Prominent secondary low-frequency arrivals are interpreted as multiples.  相似文献   

19.
The Gulf of Corinth is a natural laboratory for the study of seismicity and crustal deformation during continental extension. Seismic profiling along its axis provides a 24-fold normal-incidence seismic reflection profile and wide-angle reflection–refraction profiles recorded by sea-bottom seismometers (OBS) and land seismometers. At wide-angle incidence, the land receivers document the Moho at 40-km depth under the western end of the Gulf north of Aigion, rising to 32-km depth under the northern coast in the east of the Gulf. Both refraction and normal-incidence reflection sections image the basement under the deep marine basin that has formed by recent extension. The depth to the base of the sedimentary basin beneath the Gulf, constrained by both methods, is no more than 2.7 km, with 1 km of water underlain by no more than 1.7 km of sediment, less than what was expected from past modeling of uplift of the south coast in the East of the Gulf. Unlike the flat sea-bottom, the basement and sedimentary interfaces show topography along this axial line. Several deeps are identified as depocenters, which suggest that this axial line is not a strike line to the basin. It appears instead to be controlled by several faults, oblique to the S60°E overall trend of the south coast of the Gulf, their more easterly strikes being consistent with the instantaneous direction of extension measured by earthquake slip vectors and by GPS.  相似文献   

20.
The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape,affected by two major faults,one of which is in parallel to the Gulf of Aden,and the other is in parallel to the eastern margin of the Red Sea coast.The petrogenesis of such a type of intrusion provides additional information on the origin of the Oligo-Miocene magmatic activity in relation to the rifting tectonics and evolution of this part of the Arabian Shield.The granitic body of Jabal Sabir belongs to the alkaline or peralkaline suite of A-type granites.It is enriched in the REE.The tight bundle plot of its REE pattern reflects neither tectonism nor metamorphism.This granite body is characterized by high alkali(8.7%-10.13%),high-field strength elements(HFSE),but low Sr and Ba and high Zn contents.The abundance of xenoliths from the neighboring country rocks and prophyritic texture of the Jabal Sabir granite body indicate shallow depths of intrusion.The major and trace elements data revealed a fractional crystallization origin,probably with small amounts of crustal contamination.It is interpreted that the Jabal Sabir intrusion represents an anorogenic granite pertaining to the A-type,formed in a within-plate environment under an extensional tectonic setting pertaining to rift-related granites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号