首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   

2.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

3.
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro-forested sub-catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream-aquifer connectivity in these mixed-use watersheds. A study was implemented, including eight stream and co-located shallow groundwater monitoring sites, in a small sub-catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation-receiving days (i.e., 24-hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall-normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub-catchments (n = 8; p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub-catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm−1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub-catchment spatial variability in stream-aquifer gradients with co-located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation-receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro-forested catchments.  相似文献   

4.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Karst landscapes underlain with phosphatic limestones are now recognized to be an important contributor of fluvial phosphorus (P) to coastal waters. Specifically, karst agroecosystems may be a hotspot for dissolved reactive P (DRP) due to chronic over-application of organic and inorganic fertilizers that create legacy P accumulation in surface soils. Nevertheless, few studies have assessed the hydrologic controls on DRP transport in these systems at the watershed scale, which is the focus of this study. We analysed soil moisture, soil water extractable P, and storm event hydrologic and water quality data from a small heterogenous karst watershed (10.7 km2) in the Inner-Bluegrass Region of Central Kentucky, USA. Four storm events were sampled in winter, 2020 and were analysed for flow pathways using hydrograph recession analysis and water source connectivity using a tracer-based unmixing model. Based on hydrograph separation results, multiple linear regression analysis was performed to assess drivers of DRP concentrations and loadings. Soil water extractable P results showed stark vertical gradients with greater concentrations at both the surface and deeper soil zones, and minimum concentrations in the root zone. Results for the storm event analysis showed that water source connectivity provided superior prediction of DRP concentrations over the flow pathway analysis, which reflected the heterogeneity of karst maturity masking intermediate flow pathways. Findings from the MLR and loading analysis suggest waters sourced from the soil/epikarst produced significantly higher loadings compared with phreatic and precipitation water source in the three largest events, although concentrations fell between the phreatic (low) and precipitation (high) sources. Findings highlight variable activation of matrix-macropore exchange at different depths throughout the event. Collectively these results suggest existing models and approaches to assess karst hydrology need revision to improve management strategies in this critical landscape.  相似文献   

6.
Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a 2‐year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 μg N L?1) being greater than drains in sandy loam soils (4.0 μg N L?1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment.  相似文献   

7.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013–2015. The results show that the Rc and their variability tend to be largest for the tile drainages (mean Rc = 0.09) and the main outlet (mean Rc = 0.08) showing larger Rc in January/February and smaller Rc in July/August. Tc does not vary much between the systems and tends to be largest at the main outlet (mean Tc = 6.5 h) and smallest for the tile drainages (mean Tc = 4.5 h). Groundwater levels explain the temporal variability of Rc and Tc more than soil moisture or precipitation, suggesting a role of shallow flow paths.  相似文献   

10.
Soil moisture is a key modifier of runoff generation from rainfall excess, including during extreme precipitation events associated with Atmospheric Rivers (ARs). This paper presents a new, publicly available dataset from a soil moisture monitoring network in Northern California's Russian River Basin, designed to assess soil moisture controls on runoff generation under AR conditions. The observations consist of 2-min volumetric soil moisture at 19 sites and 6 depths (5, 10, 15, 20, 50, and 100 cm), starting in summer 2017. The goals of this monitoring network are to aid the development of research applications and situational awareness tools for Forecast-Informed Reservoir Operations at Lake Mendocino. We present short analyses of these data to demonstrate their capability to characterize soil moisture responses to precipitation across sites and depths, including time series analysis, correlation analysis, and identification of soil saturation thresholds that induce runoff. Our results show strong inter-site Pearson's correlations (>0.8) at the seasonal timescale. Correlations are strong (>0.8) during events with high antecedent soil moisture and during drydown periods, and weak (<0.5) otherwise. High event runoff ratios are observed when antecedent soil moisture thresholds are exceeded, and when antecedent runoff is high. Although local heterogeneity in soil moisture can limit the utility of point source data in some hydrologic model applications, our analyses indicate three ways in which soil moisture data are valuable for model design: (1) sensors installed at 6 depths per location enable us to identify the soil depth below which evapotranspiration and saturation dynamics change, and therefore choose model soil layer depths, (2) time series analysis indicates the role of soil moisture processes in controlling runoff ratio during precipitation, which hydrologic models should replicate, and (3) spatial correlation analysis of the soil moisture fluctuations helps identify when and where distributed hydrologic modelling may be beneficial.  相似文献   

11.
Water quality problems are frequently influenced by hydrological processes, particularly in landscapes in which land drainage has been modified. The expansion of agricultural tile drainage in the Northern Great Plains of North America is occurring, yet is controversial due to persistent water quality problems such as eutrophication. Runoff‐generating mechanisms in North American tile‐drained landscapes in vertisolic soils have not been investigated but are important for understanding the impacts of tile drainage on water quantity and quality. This study evaluated the role of climate drivers on the activation of overland (OF) and tile (TF) flow and groundwater flow responses (GWT) on tile‐drained and nontile‐drained farm fields in Southern Manitoba, Canada. The response times of different flow paths (OF, TF, and GWT) were compared for 23 hydrological events (April–September 2015, 2016) to infer dominant runoff generation processes. Runoff responses (all pathways) were more rapid following higher intensity rainfall. Subsurface responses were hastened by wetter antecedent conditions in spring and delayed by the seasonal soil–ice layer. The activation of OF did not differ between the tiled and nontiled fields, suggesting that tile drains do little to reduce the occurrence of OF in this landscape. Rapid vertical preferential flow into tiles via preferential flow pathways was uncommon at our site, and the soil profile instead wet up from the top down. These conclusions have implications for the expansion of tile drainage and the impact of such an expansion on hydrological and biogeochemical processes in agricultural landscapes.  相似文献   

12.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   

13.
Using a Simple Soil Column Method to Evaluate Soil Phosphorus Leaching Risk   总被引:3,自引:0,他引:3  
The impacts of soil P leaching on water eutrophication have widely been concerned. However, there is no dependable method to quantitatively estimate the P leaching risk of soils. In this study, a simple soil column method was developed using two calcareous Fluvisols, silt loam and loam. The soil column was 20 cm in length and 5 cm in diameter, and distilled water was continuously supplied from the top. The volume and dissolved reactive P (DRP) concentrations of leachate were measured. Results showed that DRP concentrations in leachate increased slowly for the low soil Olsen‐P levels but rapidly for the high Olsen‐P levels. According to these two‐phase changes in the DRP versus soil Olsen‐P contents, the thresholds of P leaching risk were estimated to be 41.1 and 62.3 mg P kg?1 (Olsen‐P) for silt loam and loam, respectively. The P leaching intensity of soils increased by 3‐ to 540‐fold if the soil Olsen‐P contents accumulated from 6.6 to 155.5 mg P kg?1. The outcomes derived from this study regarding the determination of P leaching threshold and intensity by the soil column method also need a further verification on more soils with a wide range of physical and chemical properties.  相似文献   

14.
Abstract

This study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.

Editor Z.W. Kundzewicz; Associate editor C.-Y. Xu

Citation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335.  相似文献   

15.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Air-borne passive microwave remote sensors measure soil moisture at the footprint scale, a scale of several hundred square meters or kilometers that encompasses different characteristic combinations of soil, topography, vegetation, and climate. Studies of within-footprint variability of soil moisture are needed to determine the factors governing hydrologic processes and their relative importance, as well as to test the efficacy of remote sensors. Gridded ground-based impedance probe water content data and aircraft-mounted Electronically Scanned Thinned Array Radiometer (ESTAR) pixel-average soil moisture data were used to investigate the spatio-temporal evolution and time-stable characteristics of soil moisture in three selected (LW03, LW13, LW21) footprints from the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Better time-stable features were observed within a footprint containing sandy loam soil than within two pixels containing silty loam soil. Additionally, flat topography with split wheat/grass land cover produced the largest spatio-temporal variability and the least time stability in soil moisture patterns. A comparison of ground-based and remote sensing data showed that ESTAR footprint-average soil moisture was well calibrated for the LW03 pixel with sandy loam soil, rolling topography, and pasture land cover, but improved calibration is warranted for the LW13 (silty loam soil, rolling topography, pasture land) and LW21 (silty loam soil, flat topography, split vegetation of wheat and grass land with tillage practice) pixels. Footprint-scale variability and associated nonlinear soil moisture dynamics may prove to be critical in the regional-scale hydroclimatic models.  相似文献   

17.
Intensification of concentrated animal feeding operations combined with the use of tile drains in agricultural fields has resulted in land-applied manure being a significant source of hormones to the environment. Currently, no model exists to simulate hormone fluxes from tile drains under field conditions. Therefore, we developed the Hormone Export and Recovery Dynamics (HERD) model, which incorporates hydro-climatic, biogeochemical, and anthropogenic drivers that affect hormone fate and transport. We validated HERD using known input (rainfall; lagoon effluent irrigation) and response data (tile drain flow; 17β-estradiol and estrone fluxes) from the 2009 growing season, 18 years after land-application activities began at a tile-drained field in Indiana. We used HERD to better understand the: (1) decision-making process underlying effluent irrigation activities; (2) contribution of macropore flow to estrogen transport; (3) potential for long-term applications to result in the development of legacy estrogen sources within the soil profile; and (4) potential recovery trajectory of estrogen transport following the cessation of animal waste applications. HERD adequately predicted irrigation events based on lagoon storage limits. Simple threshold exceedance logic for macropore flow activation accounted for ∼87% of the observed estrogen loads. Application history was found to be important, as not accounting for 18 years of application led to a severe underestimation of the observed estrogen loads; however, accounting for application history led to a much closer match between modeled and observed fluxes. Simulated trajectories after cessation of applications indicated that estrogens may continue to leach for several decades, which has important implications for mitigating hormone concentrations in receiving water bodies.  相似文献   

18.
The partitioning of rainfall into surface runoff and infiltration influences many other aspects of the hydrologic cycle including evapotranspiration, deep drainage and soil moisture. This partitioning is an instantaneous non-linear process that is strongly dependent on rainfall rate, soil moisture and soil hydraulic properties. Though all rainfall datasets involve some degree of spatial or temporal averaging, it is not understood how this averaging affects simulated partitioning and the land surface water balance across a wide range of soil and climate types. We used a one-dimensional physics-based model of the near-surface unsaturated zone to compare the effects of different rainfall discretization (5-min point-scale; hourly point-scale; hourly 0.125° gridded) on the simulated partitioning of rainfall for many locations across the United States. Coarser temporal resolution rainfall data underpredicted seasonal surface runoff for all soil types except those with very high infiltration capacities (i.e., sand, loamy sand). Soils with intermediate infiltration capacities (i.e., loam, sandy loam) were the most affected, with less than half of the expected surface runoff produced in most soil types when the gridded rainfall dataset was used as input. The impact of averaging on the water balance was less extreme but non-negligible, with the hourly point-scale predictions exhibiting median evapotranspiration, drainage and soil moisture values within 10% of those predicted using the higher resolution 5-min rainfall. Water balance impacts were greater using the gridded hourly dataset, with average underpredictions of ET up to 27% in fine-grained soils. The results suggest that “hyperresolution” modelling at continental to global scales may produce inaccurate predictions if there is not parallel effort to produce higher resolution precipitation inputs or sub-grid precipitation parameterizations.  相似文献   

19.
Hydrological studies across varied climatic and physiographic regions have observed small changes in the ‘states of wetness’; based on average soil moisture, can lead to dramatic changes in the amount of water delivered to the stream channel. This non-linear behaviour of the storm response has been attributed to a critical switching in spatial organization of shallow soil moisture and hydrologic connectivity. However, much of the analysis of the role of soil moisture organization and connectivity has been performed in small rangeland catchments. Therefore, we examined the relationship between hydrologic connectivity and runoff response within a temperate forested watershed of moderate relief. We have undertaken spatial surveys of shallow soil moisture over a sequence of storms with varying antecedent moisture conditions. We analyse each survey for evidence of hydrologic connectivity and we monitor the storm response from the catchment outlet. Our results show evidence of a non-linear response in runoff generation over small changes in measures of antecedent moisture conditions; yet, unlike the previous studies of rangeland catchments, in this forested landscape we do not observe a significant change in geostatistical hydrologic connectivity with variations in antecedent moisture conditions. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not always be a good predictor of critical hydrologic connectivity that leads to threshold change in runoff generation, as has been the case in rangeland catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号