首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical alpine grasslands, locally known as páramos, are the water towers of the northern Andes. They are an essential water source for drinking water, irrigation schemes and hydropower plants. But despite their high socio‐economic relevance, their hydrological processes are very poorly understood. Since environmental change, ranging from small scale land‐use changes to global climate change, is expected to have a strong impact on the hydrological behaviour, a better understanding and hydrological prediction are urgently needed. In this paper, we apply a set of nine hydrological models of different complexity to a small, well monitored upland catchment in the Ecuadorian Andes. The models represent different hypotheses on the hydrological functioning of the páramo ecosystem at catchment scale. Interpretation of the results of the model prediction and uncertainty analysis of the model parameters reveals important insights in the evapotranspiration, surface runoff generation and base flow in the páramo. However, problems with boundary conditions, particularly spatial variability of precipitation, pose serious constraints on the differentiation between model representations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Baseflow in the Andes is commonly considered to be related with the release of water stored in páramos. Páramo is the predominant ecosystem above 3500 m a.s.l. and is characterized by a rainy and cold climate with low evapotranspiration. However, this baseflow concept is based on hydrological process studies in small Andean catchments of a few square kilometre with a homogeneous land cover. Middle‐sized Andean catchments, like the subcatchments of Tarqui and Yanuncay, Ecuador, are rarely homogeneous or uniformly covered by páramo. The objectives of this study are therefore to investigate baseflow characteristics in heterogeneous Andean catchments and to identify relationships between baseflow processes and physical characteristics such as storage and recharge. Hereby, the contribution to baseflow of páramo and other sources such as alluvial aquifers is quantified. This study uses nonlinear recession analysis, physically based filters and digital filters for comparison of baseflow of neighbouring but distinct subcatchments. The Yanuncay subcatchment shows a clearly different storage capacity and recession. The storage capacity of Yanuncay is 50% higher than for Tarqui because of its higher coverage of páramo. On the other hand, considerable storage capacity has also been found in the Tarqui subcatchment, which has a limited páramo area but a significant alluvial aquifer. It is shown that improved understanding of the specific baseflow characteristics such as storage and recharge and its relationships to the heterogeneity of the land cover in Andean catchments will lead to a better assessment of the water resources and give new insights for effective management actions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

The need for a detailed investigation of the Vea catchment water balance components cannot be overemphasized due to its accelerated land-cover dynamics and the associated impacts on the hydrological processes. This study assessed the possible consequences of land-use change scenarios (i.e. business as usual, BAU, and afforestation for the year 2025) compared to the 2016 baseline on the Vea catchment’s water balance components using the Soil and Water Assessment Tool (SWAT) model. The data used include daily climate and discharge, soil and land use/land cover maps. The results indicate that the mean annual water yield may increase by 9.1% under the BAU scenario but decrease by 2.7% under the afforestation scenario; actual evapotranspiration would decrease under BAU but increase under afforestation; and groundwater recharge may increase under both scenarios but would be more pronounced under the afforestation scenario. These outcomes highlight the significance of land-cover dynamics in water resource management and planning at the catchment.  相似文献   

4.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

5.
Few high‐elevation tropical catchments worldwide are gauged, and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall–runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011–May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that andosol soils predominantly situated on hillslopes drain laterally to histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily composed of pre‐event water stored in the histosols, which is replenished by rainfall that infiltrates through the andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non‐exceedance flows < Q35). Variations in source contributions are controlled by antecedent soil moisture, rainfall intensity, and duration of rainy periods. Saturated hydraulic conductivity of the soils, higher than the year‐round low precipitation intensity, indicates that Hortonian overland flow rarely occurs during high‐intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high‐elevation tropical ecosystem, (1) subsurface flow is a dominant hydrological process and (2) (histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Land use change as conversion pasture to forest produces several changes on hydrological cycle. In this paper, we analyse the effects on stream discharge of afforestation of a small watershed devoted to pasture using the HBV hydrological model. Streamflow data obtained over the first 10 years after planting were employed to evaluate the capacity of HBV model to simulate hydrological behaviour of catchment after afforestation. Obtained results indicate that the estimation of streamflow was accurate as reflected by statistics (R2 = 0.90, NSC = 0.89 and PBIAS = 0.34). Afterwards, streamflow under pasture land use (if afforestation had not occurred) was simulated using hydrometeorological data collected during the period of study and model parameters optimized previously, together with two parameters, pcorr and cevpfo, that were adjusted for pasture conditions. The HBV model results indicate that afforestation produced a water yield reduction around 2000 mm (22% of total stream discharge) during the first 10 years of planting growth. The differences between forest and pasture land cover are increasing in all seasons year by year. The greatest streamflow reduction was observed in wet period (autumn and winter) with 76% of total reduction. In summer, streamflow reduction represents only 3% of total, however, represents 24.7% of discharge in this season. Streamflow reduction was related to increase of rainfall interception (mainly in wet periods) and the increase of evapotranspiration by plantation in dry periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the natural low flow of a catchment is critical for effective water management policy in semi-arid and arid lands. The Geba catchment in Ethiopia, forming the headwaters of Tekeze-Atbara basin was known for its severe land degradation before the recent large scale Soil and Water conservation (SWC) programs. Such interventions can modify the hydrological processes by changing the partitioning of the incoming rainfall on the land surface. However, the literature lacks studies to quantify the hydrological impacts of these interventions in the semi-arid catchments of the Nile basin. Statistical test and Indicators of Hydrological Alteration (IHA) were used to identify the trends of streamflow in two comparatives adjacent (one treated with intensive SWC intervention and control with fewer interventions) catchments. A distributed hydrological model was developed to understand the differences in hydrological processes of the two catchments. The statistical and IHA tools showed that the low flow in the treated catchment has significantly increased while considerably decreased in the control catchment. Comparative analysis confirmed that the low flow in the catchment with intensive SWC works was greater than that of the control by >30% while the direct runoff was lower by >120%. This implies a large proportion of the rainfall in the treated catchment is infiltrated and recharge aquifers which subsequently contribute to streamflow during the dry season. The proportion of soil storage was more than double compared to the control catchment. Moreover, hydrological response comparison from pre- and post-intervention showed that a drastic reduction in direct runoff (>84%) has improved the low flow by >55%. This strongly suggests that the ongoing intensive SWC works have significantly improved the low flows while it contributed to the reduction of total streamflow in the catchment.  相似文献   

8.
It is well established that changes in catchment land use can lead to significant impacts on water resources. Where land‐use changes increase evapotranspiration there is a resultant decrease in groundwater recharge, which in turn decreases groundwater discharge to streams. The response time of changes in groundwater discharge to a change in recharge is a key aspect of predicting impacts of land‐use change on catchment water yield. Predicting these impacts across the large catchments relevant to water resource planning can require the estimation of groundwater response times from hundreds of aquifers. At this scale, detailed site‐specific measured data are often absent, and available spatial data are limited. While numerical models can be applied, there is little advantage if there are no detailed data to parameterize them. Simple analytical methods are useful in this situation, as they allow the variability in groundwater response to be incorporated into catchment hydrological models, with minimal modeling overhead. This paper describes an analytical model which has been developed to capture some of the features of real, sloping aquifer systems. The derived groundwater response timescale can be used to parameterize a groundwater discharge function, allowing groundwater response to be predicted in relation to different broad catchment characteristics at a level of complexity which matches the available data. The results from the analytical model are compared to published field data and numerical model results, and provide an approach with broad application to inform water resource planning in other large, data‐scarce catchments.  相似文献   

9.
Utilising newly available instrumentation, the carbon balance in two small tropical catchments was measured during two discharge events at high temporal resolution. Catchments share similar climatic conditions, but differ in land use with one draining a pristine rainforest catchment, the other a fully cleared and cultivated catchment. The necessity of high resolution sampling in small catchments was illustrated in each catchment, where significant chemical changes occurred in the space of a few hours or less. Dissolved and particulate carbon transport dominated carbon export from the rainforest catchment during high flow, but was surpassed by degassing of CO2 less than 4 h after the discharge peak. In contrast, particulate organic carbon dominated export from the cleared catchment, in all flow conditions with CO2 evasion accounting for 5–23% of total carbon flux. Stable isotopes of dissolved inorganic carbon (DIC) in the ephemeral rainforest catchment decreased quickly from ~1.5 ‰ to ~ ?16 ‰ in 5 h from the flood beginning. A two‐point mixing model revealed that in the initial pulse, over 90% of the DIC was of rainwater origin, decreasing to below 30% in low flow. In the cultivated catchment, δ13CDIC values varied significantly less (?11.0 to ?12.2 ‰) but revealed a complex interaction between surface runoff and groundwater sources, with groundwater DIC becoming proportionally more important in high flow, due to activation of macropores downstream. This work adds to an increasing body of work that recognises the importance of rapid, short‐lived hydrological events in low‐order catchments to global carbon dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of afforestation on water yield from catchments are reviewed. In the light of research findings and an assessment of the method currently used in South Africa to determine reductions of water production associated with afforestation, the ACRU agrohydrological model is adapted to account for changes in critical land use related processes as a forest grows in time by incorporation of a dynamic land use information file. First tests with this model on a catchment at Cathedral Peak in the Natal Drakensberg, which was afforested in 1951, indicate that forest hydrological effects can be modelled successfully with a dynamic land use file. Further model development is outlined.  相似文献   

11.
Nearby catchments in the same landscape are often assumed to have similar specific discharge (runoff per unit catchment area). Five years of streamflow from 14 nested catchments in a 68 km2 landscape was used to test this assumption, with the hypothesis that the spatial variability in specific discharge is smaller than the uncertainties in the measurement. The median spatial variability of specific discharge, defined as subcatchment deviation from the catchment outlet, was 33% at the daily scale. This declined to 24% at a monthly scale and 19% at an annual scale. These specific discharge differences are on the same order of magnitude as predicted for major land‐use conversions or a century of climate change. Spatial variability remained when considering uncertainties in specific discharge, and systematic seasonal patterns in specific discharge variation further provide confidence that these differences are more than just errors in the analysis of catchment area, rainfall variability or gauging. Assuming similar specific discharge in nearby catchments can thus lead to spurious conclusions about the effects of disturbance on hydrological and biogeochemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Predicting the impact of land use changes on the hydrological response is crucial for water resource management. In the particular case of small catchments (1–10 km2), distributed models could provide useful answers regarding the effects of cultivation practices and man‐made works on water fluxes. However, the impacts of specific land use spatial arrangements are difficult to predict because of the prohibitive number of possible cases to consider. Focusing on surface runoff, this article describes a strategy based on a water particle tracking routine to be plugged‐in a distributed model that is designed to determine the spatial arrangements of land management practices that have the greatest impact on volume, peak discharge and lag time at the catchment outlet. A case study is described; the hydrological response of the Roujan catchment (Herault, France) is simulated with the MHYDAS model. The Roujan catchment contains a vineyard in a Mediterranean climate in a landscape in which weeding practices highly influence the partition between soil infiltration and runoff. Results showed that the proposed strategy is much more efficient than a random approach to design the spatial arrangements of the vineyard weeding practices with the greatest impact. Therefore, the proposed strategy may lead to innovative policies for the spatial planning of land management practices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Sixteen small catchments in the Maroondah region of Victoria, Australia were analysed using rainfall, temperature and streamflow time series with a rainfall–runoff model whose parameters efficiently characterize the hydrological response of a catchment. A set of catchment attributes for each of these catchments was then compared with the associated set of hydrological response characteristics of the catchments as estimated by the model. The time constant governing quickflow recession of streamflow (τq) was related to the drainage network and catchment area. The time constant governing slowflow recession of streamflow (τs) was related to the slope and shape of the catchment. The parameter governing evapotranspirative losses ( f ) was related to catchment gradient and vegetative water use. Forestry activities in the catchments changed evapotranspirative losses and thus total volume of streamflow, but did not affect the rate of streamflow recession.  相似文献   

15.
In a context of water scarcity in Peruvian Pacific catchments as a crucial issue for Peru, added to the paucity of data availability, we propose a methodology that provides new perspectives for freshwater availability estimation as a base reference for unimpaired conditions. Under those considerations, a regional discharge of 709 m3/s to the Pacific Ocean is estimated with a significant increasing trend of about 43 m3/s per decade over the 1970 – 2010 period. To represent the multidecadal behaviour of freshwater runoff along the region, a regional runoff analysis is proposed based on hydrological modelling at annual and monthly time step for unimpaired conditions over the whole 1970 – 2010 period. Differential Split‐Sample Tests are used to assess the hydrological modelling robustness of the GR1A and GR2M conceptual lumped models, showing a satisfactory transposability from dry to wet years inside the thresholds defined for Nash–Sutcliffe and bias criteria. This allowed relating physical catchment characteristics with calibrated and validated model parameters, thus offering a regional perspective for dryland conditions in the study area (e.g., the anticlockwise hysteresis relationship found for seasonal precipitation–runoff relationship) as well as the impacts of climate variability and catchment characteristics.  相似文献   

16.
There is global concern about headwater management and associated impacts on river flow. In many wet temperate zones peatlands can be found covering headwater catchments. In the UK there is major concern about how environmental change, driven by human interventions, has altered the surface cover of headwater blanket peatlands. However, the impact of such land‐cover changes on river flow is poorly understood. In particular, there is poor understanding of the impacts of different spatial configurations of bare peat or well‐vegetated, restored peat on river flow peaks in upland catchments. In this paper, a physically based, distributed and continuous catchment hydrological model was developed to explore such impacts. The original TOPMODEL, with its process representation being suitable for blanket peat catchments, was utilized as a prototype acting as the basis for the new model. The equations were downscaled from the catchment level to the cell level. The runoff produced by each cell is divided into subsurface flow and saturation‐excess overland flow before an overland flow calculation takes place. A new overland flow module with a set of detailed stochastic algorithms representing overland flow routing and re‐infiltration mechanisms was created to simulate saturation‐excess overland flow movement. The new model was tested in the Trout Beck catchment of the North Pennines of England and found to work well in this catchment. The influence of land cover on surface roughness could be explicitly represented in the model and the model was found to be sensitive to land cover. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi‐distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high‐mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two‐step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

18.
Abstract

A modelling experiment is used to examine different land-use scenarios ranging from extreme deforestation (31% forest cover) to pristine (95% forest cover) conditions and related Payment for Ecosystem Services (PES) schemes to assess whether a change in streamflow dynamics, discharge extremes and mean annual water balance of a 73.4-km2 tropical headwater catchment in Costa Rica could be detected. A semi-distributed, conceptual rainfall–runoff model was adapted to conceptualize the empirically-based, dominant hydrological processes of the study area and was multi-criteria calibrated using different objective functions and empirical constraints on model simulations in a Monte Carlo framework to account for parameter uncertainty. The results suggest that land-use change had relatively little effect on the overall mean annual water yield (<3%). However, streamflow dynamics proved to be sensitive in terms of frequency, timing and magnitude of discharge extremes. For low flows and peak discharges of return periods greater than one year, land use had a minor influence on the runoff response. Below these thresholds (<1-year return period), forest cover potentially decreased runoff peaks and low flows by as much as 10%, and non-forest cover increased runoff peaks and low flows by up to 15%. The study demonstrated the potential for using hydrological modelling to help identify the impact of protection and reforestation efforts on ecosystem services.

Editor Z.W. Kundzewicz

Citation Birkel, C., Soulsby, C., and Tetzlaff, D., 2012. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 57 (8), 1543–1561.  相似文献   

19.
Long-term catchment experiments from South Africa have demonstrated that afforestation of grasslands and shrublands significantly reduces surface-water runoff. These results have guided the country's forestry policy and the implementation of a national Invasive Alien Plant (IAP) control programme for the past few decades. Unfortunately, woody IAP densities continue to increase, compounding existing threats to water security from population growth and climatic change. Decision makers need defensible estimates of the impacts of afforestation or invasions on runoff to weigh up alternative land use options, or guide investment of limited resources into ecosystem restoration through IAP clearing versus engineering-based water-augmentation schemes. Existing attempts to extrapolate the impacts observed in catchment afforestation experiments to broad-scale IAP impacts give no indication of uncertainty. Globally, the uncertainty inherent in the results from paired-catchment experiments is seldom propagated into subsequent analyses making use of these data. We present a fully reproducible Bayesian model that propagates uncertainty from input data to final estimates of changes in streamflow when extrapolating from catchment experiments to broader landscapes. We apply our model to South Africa's catchment experiment data, estimating streamflow losses to plantations and analogous plant invasions in the catchments of southwestern South Africa, including uncertainty. We estimate that regional streamflow is reduced by 304 million m3 or 4.14% annually as a result of IAPs, with an upper estimate of 408 million m3 (5.54%) and a lower estimate of 267 million m3 (3.63%). Our model quantifies uncertainty associated with all parameters and their contribution to overall uncertainty, helping guide future research needs. Acknowledging and quantifying inherent uncertainty enables more defensible decisions regarding water resource management.  相似文献   

20.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号