首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

Abstract The aim of this study was to estimate the uncertainties in the streamflow simulated by a rainfall–runoff model. Two sources of uncertainties in hydrological modelling were considered: the uncertainties in model parameters and those in model structure. The uncertainties were calculated by Bayesian statistics, and the Metropolis-Hastings algorithm was used to simulate the posterior parameter distribution. The parameter uncertainty calculated by the Metropolis-Hastings algorithm was compared to maximum likelihood estimates which assume that both the parameters and model residuals are normally distributed. The study was performed using the model WASMOD on 25 basins in central Sweden. Confidence intervals in the simulated discharge due to the parameter uncertainty and the total uncertainty were calculated. The results indicate that (a) the Metropolis-Hastings algorithm and the maximum likelihood method give almost identical estimates concerning the parameter uncertainty, and (b) the uncertainties in the simulated streamflow due to the parameter uncertainty are less important than uncertainties originating from other sources for this simple model with fewer parameters.  相似文献   

3.
《水文科学杂志》2013,58(4):685-695
Abstract

Employing 1-, 2-, 4-, 6-, 12- and 24-hourly data sets for two catchments (10.6 and 298 km2) in Wales, the calibrated parameters of a unit hydrograph-based model are shown to change substantially over that range of data time steps. For the smaller basin, each model parameter reaches, or approaches, a stable value as the data time step decreases, providing a straightforward method of estimating time-step independent model parameter values. For the larger basin, the model parameters also reach, or approach, stable values using hourly data, but, for reasons given in the paper, interpretation of the results is more difficult. Model parameter sensitivity analyses are presented that give insights into the relative precision on the parameters for both catchments. The paper discusses the importance of accounting for model parameter data time-step dependency in pursuit of a reduction in the uncertainty associated with estimates of flow in ungauged basins, and suggests that further work along these lines be undertaken using different catchments and models.  相似文献   

4.
Testing competing conceptual model hypotheses in hydrology is complicated by uncertainties from a wide range of sources, which result in multiple simulations that explain catchment behaviour. In this study, the limits of acceptability uncertainty analysis approach used to discriminate between 78 competing hypotheses in the Framework for Understanding Structural Errors for 24 catchments in the UK. During model evaluation, we test the model's ability to represent observed catchment dynamics and processes by defining key hydrologic signatures and time step‐based metrics from the observed discharge time series. We explicitly account for uncertainty in the evaluation data by constructing uncertainty bounds from errors in the stage‐discharge rating curve relationship. Our study revealed large differences in model performance both between catchments and depending on the type of diagnostic used to constrain the simulations. Model performance varied with catchment characteristics and was best in wet catchments with a simple rainfall‐runoff relationship. The analysis showed that the value of different diagnostics in constraining catchment response and discriminating between competing conceptual hypotheses varies according to catchment characteristics. The information content held within water balance signatures was found to better capture catchment dynamics in chalk catchments, where catchment behaviour is predominantly controlled by seasonal and annual changes in rainfall, whereas the information content in the flow‐duration curve and time‐step performance metrics was able to better capture the dynamics of rainfall‐driven catchments. We also investigate the effect of model structure on model performance and demonstrate its (in)significance in reproducing catchment dynamics for different catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.  相似文献   

6.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The capability of the Surface inFiltration Baseflow (SFB) conceptual rainfall-runoff model to simulate streamflow for three catchments selected from northern Iraq is investigated. These catchments differ in their climatic regimes and physical characteristics. Three versions of the model were tested: the original three-parameter model (SFB), the modified five-parameter model (SFB-5), and the modified six-parameter model (SFB-6). The available daily precipitation, potential evapotranspiration and runoff data were used in conjunction with a simulated annealing (SA) optimization technique to calibrate the various versions of the SFB model. A simple sensitivity analysis was then carried out to determine the relative importance of the model parameters. The study indicated that use of the original three parameter model was not adequate to simulate monthly streamflow in the selected catchments. The modified version (SFB-5) provided better runoff simulation than the original SFB model; overall a 19% increase was observed in the coefficient of determination (R2) between simulated and observed monthly runoff. The SFB-5 model performed with varying degrees of success among the catchments. The model performance in the validation stage was reasonable and comparable to that of the calibration stage. The sensitivity analysis of the SFB model for arid catchments revealed that the baseflow parameter (B) was the most sensitive one, while the S and F parameters were less sensitive than the B parameter.  相似文献   

8.
In this study, uncertainty in model input data (precipitation) and parameters is propagated through a physically based, spatially distributed hydrological model based on the MIKE SHE code. Precipitation uncertainty is accounted for using an ensemble of daily rainfall fields that incorporate four different sources of uncertainty, whereas parameter uncertainty is considered using Latin hypercube sampling. Model predictive uncertainty is assessed for multiple simulated hydrological variables (discharge, groundwater head, evapotranspiration, and soil moisture). Utilizing an extensive set of observational data, effective observational uncertainties for each hydrological variable are assessed. Considering not only model predictive uncertainty but also effective observational uncertainty leads to a notable increase in the number of instances, for which model simulation and observations are in good agreement (e.g., 47% vs. 91% for discharge and 0% vs. 98% for soil moisture). Effective observational uncertainty is in several cases larger than model predictive uncertainty. We conclude that the use of precipitation uncertainty with a realistic spatio‐temporal correlation structure, analyses of multiple variables with different spatial support, and the consideration of observational uncertainty are crucial for adequately evaluating the performance of physically based, spatially distributed hydrological models.  相似文献   

9.
The main objective of this study was to use an uncertainty version of a widely used monthly time step, semi-distributed model (the Pitman model) to explore the equifinalities in the way in which the main hydrological processes are simulated and any identifiable linkages with uncertainties in the available observational data. The study area is the Zambezi River basin and 17 gauged sub-basins have been included in the analyses. Unfortunately, it is not generally possible to quantify some of the observational uncertainties in such a data scarce area and mostly we are limited to identifying where these data are clearly deficient (i.e., erroneous or non-representative). The overall conclusion is that the equifinalities in the model are hugely dominant in terms of the uncertainties in the relative occurrence of different runoff generating processes, although water use uncertainties in the semi-arid parts of the basin can contribute to these uncertainties. The identification of landscape features that suggest the occurrence of saturation excess surface runoff provides some information to constrain the model. Improved independent estimates of groundwater recharge is also identified as a key source of observational data that would help a great deal in constraining the model parameter space and therefore reducing some of the model equifinality.  相似文献   

10.
Conditional daily rainfields were generated using collocated raingauge radar data by a kriging interpolation method, and disaggregated into hourly rainfields using variants of the method of fragments. A geographic information system (GIS)-based distributed rainfall–runoff model was used to convert the hourly rainfields into hydrographs. Using the complete radar rainfall as input, the rainfall–runoff model was calibrated based on storm events taken from nested catchments. Performance statistics were estimated by comparing the observed and the complete radar rainfall simulated hydrographs. Degradation in the hydrograph performance statistics by the simulated hourly rainfields was used to identify runoff error propagation. Uncertainty in daily rainfall amounts alone caused higher errors in runoff (depth, peak, and time to peak) than those caused by uncertainties in the hourly proportions alone. However, the degradation, which reduced with runoff depth, caused by the combined uncertainties was not significantly different from that caused by the uncertainty of amounts alone.  相似文献   

11.
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.  相似文献   

12.
In this paper, we analyse the uncertainty and parameter sensitivity of a conceptual water quality model, based on a travel time distribution (TTD) approach, simulating electrical conductivity (EC) in the Duck River, Northwest Tasmania, Australia for a 2-year period. Dynamic TTDs of stream water were estimated using the StorAge Selection (SAS) approach, which was coupled with two alternate methods to model stream water EC: (1) a solute-balance approach and (2) a water age-based approach. Uncertainty analysis using the Differential Evaluation Adoptive Metropolis (DREAM) algorithm showed that: 1. parameter uncertainty was a small contribution to the overall uncertainty; 2. most uncertainty was related to input data uncertainty and model structure; 3. slightly lower total error was obtained in the water age-based model than the solute-balance model; 4. using time-variant SAS functions reduced the model uncertainty markedly, which likely reflects the effect of dynamic hydrological conditions over the year affecting the relative importance of different flow pathways over time. Model parameter sensitivity analysis using the Variogram Analysis of Response Surfaces (VARS-TOOL) framework found that parameters directly related to the EC concentration were most sensitive. In the solute-balance model, the rainfall concentration Crain and in the age-based model, the parameter controlling the rate of change of EC with age (λ) were the most sensitive parameter. Model parameters controlling the age mixes of both evapotranspiration and streamflow water fluxes (i.e., the SAS function parameters) were influential for the solute-balance model. Little change in parameter sensitivity over time was found for the age-based concentration relationship; however, the parameter sensitivity was quite dynamic over time for the solute-balance approach. The overarching outcomes provide water quality modellers, engineers and managers greater insight into catchment functioning and its dependence on hydrological conditions.  相似文献   

13.
Precipitation time series with high temporal resolution are desired for hydrological modelling and flood studies. Yet the choice of an appropriate resolution is not straightforward because the use of too high a temporal resolution increases the data requirements, computational costs and, presumably, associated uncertainty, while performance improvement may be indiscernible. In this study, the effect of averaging hourly precipitation on model performance and associated uncertainty is investigated using two data sources: station network precipitation (SNP) and radar-based precipitation (RBP). From these datasets, time series of different temporal resolutions were generated, and runoff was simulated for 13 pre-alpine catchments with a bucket-type model. Our results revealed that different temporal resolutions were required for an acceptable model performance depending on the catchment size and data source. These were 1–12 h for small (16–59 km2), 3-21 h for medium (60–200 km2), and 24 h for large (200–939 km2) catchments.  相似文献   

14.
This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Using the Monte Carlo (MC) method, this paper derives arithmetic and geometric means and associated variances of the net capillary drive parameter, G, that appears in the Parlange infiltration model, as a function of soil texture and antecedent soil moisture content. Approximate expressions for the arithmetic and geometric statistics of G are also obtained, which compare favourably with MC generated ones. This paper also applies the MC method to evaluate parameter sensitivity and predictive uncertainty of the distributed runoff and erosion model KINEROS2 in a small experimental watershed. The MC simulations of flow and sediment related variables show that those parameters which impart the greatest uncertainty to KINEROS2 model outputs are not necessarily the most sensitive ones. Soil hydraulic conductivity and wetting front net capillary drive, followed by initial effective relative saturation, dominated uncertainties of flow and sediment discharge model outputs at the watershed outlet. Model predictive uncertainty measured by the coefficient of variation decreased with rainfall intensity, thus implying improved model reliability for larger rainfall events. The antecedent relative saturation was the most sensitive parameter in all but the peak arrival times, followed by the overland plane roughness coefficient. Among the sediment related parameters, the median particle size and hydraulic erosion parameters dominated sediment model output uncertainty and sensitivity. Effect of rain splash erosion coefficient was negligible. Comparison of medians from MC simulations and simulations by direct substitution of average parameters with observed flow rates and sediment discharges indicates that KINEROS2 can be applied to ungauged watersheds and still produce runoff and sediment yield predictions within order of magnitude of accuracy.  相似文献   

16.
ABSTRACT

Climate models and hydrological parameter uncertainties were quantified and compared while assessing climate change impacts on monthly runoff and daily flow duration curve (FDC) in a Mediterranean catchment. Simulations of the Soil and Water Assessment Tool (SWAT) model using an ensemble of behavioural parameter sets derived from the Generalized Likelihood Uncertainty Estimation (GLUE) method were approximated by feed-forward artificial neural networks (FF-NN). Then, outputs of climate models were used as inputs to the FF-NN models. Subsequently, projected changes in runoff and FDC were calculated and their associated uncertainty was partitioned into climate model and hydrological parameter uncertainties. Runoff and daily discharge of the Chiba catchment were expected to decrease in response to drier and warmer climatic conditions in the 2050s. For both hydrological indicators, uncertainty magnitude increased when moving from dry to wet periods. The decomposition of uncertainty demonstrated that climate model uncertainty dominated hydrological parameter uncertainty in wet periods, whereas in dry periods hydrological parametric uncertainty became more important.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

17.
There is a growing appreciation of the uncertainties in the estimation of snow-melt and glacier-melt as a result of climate change in high elevation catchments. Through a detailed examination of three hydrological models in two catchments, and interpretation of results from previous studies, we observed that many variations in estimated streamflow could be explained by the selection of a best parameter set from the possible good model parameters. The importance of understanding changing glacial dynamics is critically important for our study areas in the Upper Indus Basin where Pakistan's policymakers are planning infrastructure to meet the future energy and water needs of hundreds of millions of people downstream. Yet, the effect of climate on glacial runoff and climate on snowmelt runoff is poorly understood. With the HBV model, for example, we estimated glacial melt as between 56% and 89% for the Hunza catchment. When rainfall was a scaled parameter, the models estimated glacial melt as between 20% and 100% of streamflow. These parameter sets produced wildly different projections of future climate for RCP8.5 scenarios in 2046–2075 compared to 1976–2005. Assuming no glacial shrinkage, for one climate projection, we found that the choice among good parameter sets resulted in projected values of future streamflow across a range from +54% to +125%. Parameter selection was the most significant source of uncertainty in the glaciated catchment and amplified climate model uncertainty, whereas climate model choice was more important in the rainfall dominated catchment. Although the study focuses on Pakistan, the overall conclusions are instructive for other similar regions in the world. We suggest that modellers of glaciated catchments should present results from at least the book-ends: models with low sensitivity to ice-melt and models with high sensitivity to ice-melt. This would reduce confusion among decision makers when they are faced with similar contrasting results.  相似文献   

18.
In this paper, we assess the performance of the catchment model SIMulated CATchment model (SIMCAT), to predict nitrate and soluble reactive phosphorus concentrations against four monitoring regimes with different spatial and temporal sampling frequencies. The Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty framework is used, along with a general sensitivity analysis to understand relative parameter sensitivity. Improvements to model calibration are explored by introducing more detailed process representation using the Integrated Catchments model (INCA) water quality model, driven by the European hydrological predictions for the environment model. The results show how targeted sampling of headwater watercourses upstream of point discharges is essential for calibrating diffuse loads and can exert a strong influence on the whole‐catchment model performance. Further downstream, if the point discharges and loads are accurately represented, then the improvement in the catchment‐scale model performance is relatively small as more calibration points are added or frequency is increased. The higher‐order, dynamic model integrated catchments model of phosphorus dynamics, which incorporates sediment and biotic interaction, resulted in improved whole‐catchment performance over SIMCAT, although there are still large epistemic uncertainties from land‐phase export coefficients and runoff. However, the very large sampling errors in routine monitoring make it difficult to invest confidence in the modelling, especially because we know phosphorous transport to be very episodic and driven by high flow conditions for which there are few samples. The environmental modelling community seems to have been stuck in this position for some time, and whilst it is useful to use an uncertainty framework to highlight these issues, it has not widely been adopted, perhaps because there is no clear mechanism to allow uncertainties to influence investment decisions. This raises the question as to whether it might better place a cost on uncertainty and use this to drive more data collection or improved models, before making investment decisions concerning, for example, mitigation strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We examine the value of additional information in multiple objective calibration in terms of model performance and parameter uncertainty. We calibrate and validate a semi‐distributed conceptual catchment model for two 11‐year periods in 320 Austrian catchments and test three approaches of parameter calibration: (a) traditional single objective calibration (SINGLE) on daily runoff; (b) multiple objective calibration (MULTI) using daily runoff and snow cover data; (c) multiple objective calibration (APRIORI) that incorporates an a priori expert guess about the parameter distribution as additional information to runoff and snow cover data. Results indicate that the MULTI approach performs slightly poorer than the SINGLE approach in terms of runoff simulations, but significantly better in terms of snow cover simulations. The APRIORI approach is essentially as good as the SINGLE approach in terms of runoff simulations but is slightly poorer than the MULTI approach in terms of snow cover simulations. An analysis of the parameter uncertainty indicates that the MULTI approach significantly decreases the uncertainty of the model parameters related to snow processes but does not decrease the uncertainty of other model parameters as compared to the SINGLE case. The APRIORI approach tends to decrease the uncertainty of all model parameters as compared to the SINGLE case. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号