首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
T.S. Jang  S.H. Kwon  B.J. Kim 《Ocean Engineering》2006,33(11-12):1552-1564
The authors of the present paper present an iterative scheme to calculate the nonlinear wave profiles [Jang, T.S., Kwon, S.H., 2005. Application of nonlinear iteration scheme to the nonlinear water wave problem: Stokian wave. Ocean Engineering, in press]. The nonlinear operator was constructed from the dynamic boundary condition of the free surface. The initial input of the iterative process was linear potential. The linear dispersion relation was utilized. The authors of the present paper suggest an improved scheme in terms of accuracy and speed of convergence by utilizing the nonlinear dispersion relation. The existence and uniqueness of the improved scheme are illustrated in this paper. The calculation results together with Fast Fourier transform revealed that the improved scheme made it possible to predict higher-order nonlinear characteristics of the Stokes’ wave.  相似文献   

2.
A comparison of the diffraction of multidirectional random waves using several selected wave spectrum models is presented in this paper. Six wave spectrum models, Bretschneider, Pierson–Moskowitz, ISSC, ITTC, Mitsuyasu, and JONSWAP spectrum, are considered. A discrete form for each of the given spectrum models is used to specify the incident wave conditions. Analytical solutions based on both the Fresnel integrals and polynomial approximations of the Fresnel integrals and numerical solutions of a boundary integral approach have been used to obtain the two-dimensional wave diffraction by a semi-infinite breakwater at uniform water depth. The diffraction of random waves is based on the cumulative superposition of linear diffraction solution. The results of predicted random wave diffraction for each of the given spectrum models are compared with those of the published physical model presented by Briggs et al. [1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering—ASCE 121(1), 23–35]. Reasonable agreement is obtained in all cases. The effect of the directional spreading function is also examined from the results of the random wave diffraction. Based on these comparisons, the present model for the analysis of various wave spectra is found to be an accurate and efficient tool for predicting the random wave field around a semi-infinite breakwater or inside a harbor of arbitrary geometry in practical applications.  相似文献   

3.
In this paper, a superposition of two periodic wave profiles in a finite water depth was investigated. This paper is focused on the improvement of a wave profile on the linear superposition of two waves. This improvement was realized by introducing an iterative method, which was based on a fixed point approach. Application of the fixed point approach to the wave superposition made it possible to obtain a wave profile of wave–wave interaction. The improved result of the wave profile was in good agreement with that of the nonlinear perturbation solution of the second order. It was interesting that the improved result revealed the higher-order nonlinear frequencies for two interacting Stokes waves while Dalzell's solution by a perturbation method could not predict them.  相似文献   

4.
In this paper, a finite difference scheme with an efficient 2-D numerical wave absorber for solving the extended Boussinesq equations as derived by Nwogu (Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway, Port, Coastal and Ocean Engineering, ASCE 119, 618–638) is proposed. The alternate direction iterative method combined with an efficient predictor-corrector scheme are adopted for the numerical solution of the governing differential equations. To parameterize the contribution of unresolved small-scale motions, the philosophy of the large eddy simulation is applied on the horizontal plane. The proposed method is verified by two test cases where experimental data are available for comparison. The first case is wave diffraction around a semi-infinite breakwater studied by Briggs et al. (Briggs, M.J., Thompson, E.F., Vincent, C.L., 1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE 121, 23–35). The other case is wave concentration by a navigation channel as reported by Yu et al. (Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W.H., 2000. Refraction and diffraction of random waves through breakwater. Ocean Engineering 27, 489–509). Numerical results agree very well with the corresponding experimental data in both cases.  相似文献   

5.
《Coastal Engineering》1999,37(2):175-192
Nonlinear wave diffraction is studied using the nonlinear time-dependent mild slope equation. The equations are solved using a combined Newton–Raphson and Crank–Nicolson finite difference scheme. The model results are verified for propagation of highly nonlinear waves over uniform depth and wave diffraction due to semi-finite breakwater and breakwater gap with different widths. Comparison between the numerical and experimental results indicates that the model is capable of simulating nonlinear wave diffraction. The model is applied to study the effect of the wave nonlinearity on the diffraction coefficient for a semi-infinite breakwater and a breakwater gap.  相似文献   

6.
D.-S. Hur  K.-H. Lee  G.-S. Yeom   《Ocean Engineering》2008,35(17-18):1826-1841
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures.  相似文献   

7.
多消浪室局部开孔沉箱防波堤反射特性的迭代解析研究   总被引:1,自引:0,他引:1  
基于势流理论,对多消浪室局部开孔沉箱防波堤的反射特性进行解析研究。研究中采用开孔墙处的二次压力损失边界条件,可以直接考虑波高对于开孔墙处能量损失的影响。利用匹配特征函数展开法和迭代方法得到当前问题的解析解。收敛性验证表明,迭代计算和级数解均具有良好的收敛性。该解析解的计算结果与分区边界元的数值计算结果一致,并且与已有的试验结果符合良好。通过算例分析,研究开孔沉箱防波堤反射系数的主要影响因素。结果表明:与单消浪室开孔沉箱防波堤相比,多消浪室开孔沉箱防波堤可以在更宽的波浪频率范围内保持低反射;增大开孔墙的开孔率,有利于降低多消浪室开孔沉箱防波堤的反射系数;当开孔墙的开孔率沿着入射波方向依次递减时,多消浪室开孔沉箱防波堤的反射系数较小。本文所建立的解析模型简单可靠,可用于工程初步设计中分析开孔沉箱防波堤的水动力性能。  相似文献   

8.
基于微幅波绕射理论,应用特征函数展开法,推导了双层直立圆弧型透空防波堤的波浪绕射解析解,从而将已有的比例边界有限元法拓展为解析算法,并据此对外层与内层防波堤所受波浪载荷进行了解析计算。计算结果表明:应用本文方法对直立透空圆环柱的绕射波浪载荷进行验证计算,所得结果与现有的解析解完全吻合,说明方法可靠。双层堤较单层堤能更有效地减弱波浪作用。波浪的入射角度和特征参数、防波堤张角与半径、防波堤透空系数以及水深等因素的相对变化对双层堤的波浪作用均存在一定影响。  相似文献   

9.
《Coastal Engineering》2001,44(2):117-139
In this paper, laboratory data for free surface displacements and velocity fields in front of a caisson breakwater covered with wave-dissipating blocks, together with wave pressures acting on the caisson, are presented and discussed. The core of the breakwater is made of a concrete caisson with a vertical front wall. The caisson is protected by a thick layer of tetrapods and is supported by a rubble mound. The breakwater is placed on the 1/25 impermeable slope. Two types of incident waves are used in the experiments: nonbreaking waves and spilling-type breaking waves. In the breaking wave case, the incident wave breaks offshore before it reaches the breakwater. The velocity data are obtained by using both the Laser Doppler Velocimeter (LDV) and the Electromagnetic Current Meter (EMCM). The raw data are analyzed using a numerical-filtering scheme so that turbulent fluctuations are separated from the phase-dependent wave motions. The vertical profiles of the time-averaged (over a wave period) turbulent velocity components at several vertical cross-sections in front of the breakwater are then analyzed. The spatial variations of the time-averaged turbulence velocity suggest that turbulence is generated inside the protective armor layer and transported into the flow region in front of the breakwater. The wave pressures on the vertical face and on the bottom of the caisson are also reported.  相似文献   

10.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

11.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

12.
The Breaking Celerity Index (BCI) is proposed as a new wave breaking criterion for Boussinesq-type equations wave propagation models (BTE).The BCI effectiveness in determining the breaking initiation location has been verified against data from different experimental investigations conducted with incident regular and irregular waves propagating along uniform slope [Utku, M. (1999). “The Relative Trough Froude Number. A New Criteria for Wave Breaking”. Ph.D. Dissertation, Dept. of Civil and Enviromental Engineering, Old Dominion University, Norfolk, VA; Gonsalves Veloso dos Reis, M.T.L. (1992). “Characteristics of waves in the surf zone”. MS Thesis, Department of Civil Engineering, University of Liverpool., Liverpool; Lara, J.L., Losada, I.J., and Liu, P.L.-F. (2006). “Breaking waves over a mild gravel slope: experimental and numerical analysis”. Journal of Geophysical Research, VOL 111, C11019] and barred beaches [Tomasicchio, G.R., and Sancho, F. (2002). “On wave induced undertow at a barred beach”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 557–569]. The considered experiments were carried out in small-scale and large-scale facilities. In addition, one set of data has been obtained by the use of the COBRAS model based upon the Reynolds Averaged Navier Stokes (RANS) equations [Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., and Sakakiyama, T. (2000). “A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions”. Proceedings of Coastal Structures ‘99, Balkema, Rotterdam, 169–174; Losada, I.J., Lara, J.L., and Liu, P.L.-F. (2005). “Numerical simulation based on a RANS model of wave groups on an impermeable slope”. Proceedings of Fifth International Symposium WAVES 2005, Madrid].Numerical simulations have been performed with the 1D-FUNWAVE model [Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998). “FUNWAVE 1.0 Fully Nonlinear Boussinesq Wave Model Documentation and User's Manual”. Research Report No CACR-98-06, Center for Applied Coastal Research, University of Delaware, Newark]. With regard to the adopted experimental conditions, the breaking location has been calculated for different trigger mechanisms [Zelt, J.A. (1991). “The run-up of nonbreaking and breaking solitary waves”. Coastal Engineering, 15, 205–246; Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). “Boussinesq modeling of wave transformation, breaking and run-up. I: 1D”. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39–47; Utku, M., and Basco, D.R. (2002). “A new criteria for wave breaking based on the Relative Trough Froude Number”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 258–268] including the proposed BCI.The calculations have shown that BCI gives a better agreement with the physical data with respect to the other trigger criteria, both for spilling and plunging breaking events, with a not negligible reduction of the calculation time.  相似文献   

13.
The study describes a new fixed-frequency Stokes wave theory that differs from previous Stokes wave theories that fix the wave number. The present wave expansion analytically reveals that the wavelength increases with wave height and exceeds than the wavelength obtained by linear wave theory. A method proposed to comparably transform the wave celerity of Fenton's [Fenton, J.D., 1985. A fifth-order Stokes theory for steady waves. Journal of Waterway, Port, Coastal and Ocean Engineering 111, 216–234.] wave theory to the present one. A direct calculation of the wavelength is introduced for practical solutions, avoiding the need to solve a nonlinear equation using an iterative numerical method.  相似文献   

14.
波浪与起伏水平板防波堤相互作用数值模拟   总被引:1,自引:1,他引:0  
利用自主研发的基于紧致插值曲线CIP(constrained interpolation profile)方法的数学模型,开展规则波与起伏水平板防波堤相互作用的数值模拟研究。模型在笛卡尔直角坐标下建立,以CIP方法为流场基本求解器,分步求解Navier-Stokes方程,利用高精度的流体体积类型的THINC/SW (tangent of hyperbola for interface capturing with slope weighting)方法重构自由液面,采用浸入边界IBM(immersed boundary method)方法处理波浪与起伏板防波堤的耦合作用问题,通过动量源项造波方法模拟波浪的产生。重点关注波浪的浅水变形和板两端涡旋脱落的非线性现象,分析不同潜深、波要素下的板周围流场分布、板的运动响应和波浪的反透射系数。结果表明:起伏水平板主要通过能量反射、板上浅水变形和板两端的涡脱落消能,能有效减小板后波高,具有作为防波堤的可行性。  相似文献   

15.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

16.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

17.
S.Y. Boo   《Ocean Engineering》2006,33(2):219-233
Wave forces on a vertical truncated circular cylinder in Stokes waves with the wave slopes ranging from 0.06 to 0.24, are measured in a wave tank. The higher harmonic wave forces are compared with the available values from theories of the FNV (Faltisen–Newman–Vinje) model and Varyani solution. The first harmonic horizontal forces measured are much larger than the theoretical values from the FNV model, while the first harmonic vertical forces are well predicted by the Varyani theory. It was also found that the FNV model significantly overpredicts the second harmonic horizontal forces in high frequency waves, but under predicts the third harmonic forces. The differences between the actual measurement and the theory, in the second and third harmonic horizontal forces, become smaller at low wave frequencies as the wave slope increases. In addition, the transverse instabilities in the incoming waves with high wave slope were observed, which is due to the nonlinear modulation. Measurements were, thus, carried out before the instability occurred.  相似文献   

18.
The note extends and completes the analysis carried out by Briganti and Dodd [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.] on the performance of a state of the art Non-Linear Shallow Water Equations solver in common coastal engineering applications. The case of bore-generated overtopping of a truncated plane beach is considered and the performance of the model is assessed by comparing with the Peregrine and Williams [Peregrine, D., Williams, S.M., 2001. Swash overtopping a truncated beach. J. Fluid Mech. 440, 391–399.] analytical solution. In particular the influence of shoreline boundary conditions is investigated by considering the two best performing approaches discussed in Briganti and Dodd [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.]. Different distances of the edge of the beach from the bore collapse point are tested. For larger distances, the accuracy of the overtopping modelling decreases, as a consequence of the error in modelling the tip of the swash lens and, consequently, the run-up. A sensitivity analysis using the numerical resolution is carried out. This reveals that the approach in which cells shallower than a prescribed threshold are drained and wave propagation speeds for wet/dry Riemann problem are used at the interface between a wet and a dry cell (referred as Option 2ea in [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.]) performs consistently better than the other.  相似文献   

19.
A first-order solution is obtained with a mild-slope parameter within the framework of the linear wave theory using the classical multiple scale method. This solution satisfies (1) the governing equations and free surface condition; (2) the coastal bottom condition in terms of multiple scale with its form analytical. As to two-dimensional wave propagating towards a slope, its solution reduces to the famous Biesel [1952. Study of wave progression in water of gradually varying depth. Gravity Waves, vol. 521. US National Bureau of Standards Circular, pp. 243–253] solution.  相似文献   

20.
The equation obtained in Part I predicts how an exceptionally high wave occurs at any fixed point within a wind wave field. The equation may be applied with a theoretical spectrum or directly with the random time series obtained by an array of wave gauges in the field. From both approaches, it emerges that a very high wave at a breakwater occurs because a well-defined three-dimensional wave group at the apex of its development hits against the breakwater, and that a very high wave at some distance before the breakwater occurs because of the collision of two wave groups: the first one going back after having been reflected, and the second one approaching the breakwater. In order to test the theory, a special breakwater was assembled off the beach at Reggio-Calabria where the significant height of the wind waves typically ranges from 0.20 to 0.40 m. When an exceptionally high wave (H = 9.6 σ) occurred at a point before this breakwater, the records made by a gauge array confirmed all the essential features of the prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号