首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立现浇X形桩(XCC桩)桩-土体系三维有限元模型,对XCC桩低应变检测动力响应进行数值模拟,得到完整桩和缺陷桩的桩顶速度响应结果,并分析完整桩及缺陷XCC桩桩顶速度响应特性及规律。计算结果表明:XCC桩低应变瞬态动测时桩顶速度响应存在明显的三维效应,桩心(激振点)附近点的入射波峰值较大,且到达时间较早;距离桩心越远点的入射波峰到达时间越滞后,入射波峰值从桩心到尖角边界先减小后增大。桩顶距桩心距离相同的环向上各点的入射波和反射波区别不大,而各点所受的高频干扰情况并不相同。变模量桩的入射波和完整桩相同,反射波峰值较完整桩小,反射波峰对应时间较完整桩滞后。局部缺陷桩桩顶距桩心距离相同环向各点的第一个缺陷反射波有微小差别,而第二个缺陷反射波有较大差别。  相似文献   

2.
The propagation of stress waves in a large-diameter pipe pile for low strain dynamic testing cannot be explained properly by traditional 1D wave theories. A new computational model is established to obtain a wave equation that can describe the dynamic response of a large-diameter thin-walled pipe pile to a transient point load during a low strain integrity test. An analytical solution in the time domain is deduced using the separation of variables and variation of constant methods. The validity of this new solution is verifi ed by an existing analytical solution under free boundary conditions. The results of this time domain solution are also compared with the results of a frequency domain solution and fi eld test data. The comparisons indicate that the new solution agrees well with the results of previous solutions. Parametric studies using the new solution with reference to a case study are also carried out. The results show that the mode number affects the accuracy of the dynamic response. A mode number greater than 10 is required to enable the calculated dynamic responses to be independent of the mode number. The dynamic response is also greatly affected by soil properties. The larger the side resistance, the smaller the displacement response and the smaller the refl ected velocity wave crest. The displacement increases as the stress waves propagate along the pile when the pile shaft is free. The incident waves of displacement and velocity responses of the pile are not the same among different points in the circumferential direction on the pile top. However, the arrival time and peak value of the pile tip refl ected waves are almost the same among different points on the pile top.  相似文献   

3.
Ultrasonic coda waves are widely used to study high-frequency scattering. However, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.  相似文献   

4.
分析2015年8月—2018年7月满洲里地震台FHDZ-M15地磁总场与分量组合观测系统记录的地磁秒采样观测数据(剔除磁暴与磁扰时间段),发现台站地磁秒采样数据资料所受干扰主要呈阶跃和尖峰形态,通过测量测区地磁场水平梯度,排查周边环境,并对设备和线路进行漏电检测,认为:阶跃形态干扰主要由高压直流输电和车辆停放引起;经逐项排查对UPS加热及输电线路漏电检测,仪器室温度过低和输电线路漏电均造成高频毛刺尖峰形态干扰,对UPS加热处理,干扰状态得到改善,但Z、F分量干扰仍在.受满洲里气候条件等因素限制,未能在2019年完成输电线路更换,当前无法确定干扰是否为输电线路漏电所致,后续将采取相应措施予以确认.  相似文献   

5.
分析2015年8月—2018年7月满洲里地震台FHDZ-M15地磁总场与分量组合观测系统记录的地磁秒采样观测数据(剔除磁暴与磁扰时间段),发现台站地磁秒采样数据资料所受干扰主要呈阶跃和尖峰形态,通过测量测区地磁场水平梯度,排查周边环境,并对设备和线路进行漏电检测,认为:阶跃形态干扰主要由高压直流输电和车辆停放引起;经逐项排查对UPS加热及输电线路漏电检测,仪器室温度过低和输电线路漏电均造成高频毛刺尖峰形态干扰,对UPS加热处理,干扰状态得到改善,但Z、F分量干扰仍在。受满洲里气候条件等因素限制,未能在2019年完成输电线路更换,当前无法确定干扰是否为输电线路漏电所致,后续将采取相应措施予以确认。  相似文献   

6.
刘中宪  尚策  王小燕  王冬 《地震学报》2017,39(1):111-131
基于一种高精度间接边界元法(IBEM), 实现了沉积盆地三维地震响应的频域、 时域精细求解, 并以半空间中椭球形沉积盆地对平面P波和SV波的散射为例, 着重探讨了入射角度、 入射波型、 入射频率、 盆地长宽比和深宽比对沉积盆地地震动放大效应的影响规律. 结果表明: 盆地形状对地震波的放大效应和空间分布状态具有显著影响, 且具体规律受控于入射波频段. ① 随着盆地深度增大, 盆地边缘面波发育更为充分, 在较宽频段内均会出现显著的地震动放大效应, 且深盆地的放大区域集中于盆地中部. ② 圆形盆地对地震波的汇聚效应最为显著, 而狭长盆地对地震波的汇聚作用相对较弱, 高频情况下可在盆地内部形成多个聚焦区域. ③ 不同波型入射下, 盆地对地震动放大效应的机制有所差异: P波入射下, 竖向位移放大主要是由于盆地边缘面波由四周向中部汇聚所致; SV波入射下, 边缘面波汇聚效应相对较弱, 而当盆地较深时, 底部透射体波和边缘面波易形成同相干涉从而显著放大地震动. 按盆地内外介质波速比为1/2, P波和SV波垂直入射下频域最大放大倍数分别为25和15, 时域放大倍数约为4.0和3.7(雷克子波). ④ 低频波入射下, 位移从盆地中部向边缘逐渐减小, 且浅层沉积盆地对地表位移幅值的放大作用不明显. ⑤ P波和SV波的入射角度对盆地地震动放大幅值及空间分布特征也具有显著影响.   相似文献   

7.
A simple turbidity model was developed with a sound physical basis based on in situ high-frequency observations of short-term, strong wind-induced sediment suspension in Taihu Lake, China. The validation results show that the model could successfully simulate turbidity caused by strong wind events, despite the relatively poor simulation accuracy for high values of turbidity caused by the entrainment of cyanobacteria by turbulence. The in situ observations and model simulation results indicate that the wind waves were within a narrow spectral band, with spectral energy mainly distributed within the 0.28–0.75 Hz band on opposite sides of the peak frequency. These high-frequency and low-energy wind waves are sensitive to depth filtering. However, the average depth of the lake is only 1.9 m, and wind waves still represent the main force of sediment suspension at the sediment-water interface. Moreover, lake currents were of significance to the maintenance of background turbidity in calm waves or ripples and in the determination of critical shear stress. By considering the spatial distribution of hydrodynamics and sediment, the model can be used to simulate the turbidity of the entire lake as well as boundary conditions for three-dimensional numerical models.  相似文献   

8.
为识别及分析浚县地震台地磁秒采样观测数据中的高频干扰成分,采用别尔采夫滤波剔除其日波及半日波,然后通过时频分析得到高频干扰时段。通过查询工作日志及进行毕奥萨伐尔定律分析,认为浚县地震台地磁秒采样数据所受高频干扰除磁暴外,主要来自电焊施工和雷电,同时发现2种干扰类型有不同的典型干扰形态。  相似文献   

9.
双相介质中地震波衰减的物理机制   总被引:1,自引:0,他引:1  
High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.  相似文献   

10.
针对三维沉积盆地对球面波的散射问题,发展一种快速宽频间接边界元方法(IBEM).利用ANSYS建立求解模型,基于Intel-Fortran编译器编译相应的计算程序,对基岩半空间三维半椭球形盆地对球面波的散射进行了数值分析,着重探讨入射波频率、波源埋深、波源与不规则地形(沉积盆地)距离等参数对地震动特性的影响规律,计算方...  相似文献   

11.
This paper presents the results of lateral impact load field tests carried out on a system of three steel pipe piles vibro-driven into soft clay in a near-shore marine environment, with the aim of evaluating the pile–soil–pile dynamic interaction. Piles are arranged in an “L” shaped horizontal layout and are instrumented with accelerometers at their free heads. The obtained results show the complex dynamic behaviour at very small strain of the vibrating soil–water–piles system. The role of different type of waves in the pile to pile interaction is investigated by analyzing the results in the time and frequency domains and by means of a time–frequency analysis. The effects of the pile spacing and input direction on these interaction mechanisms are also presented. Finally, important dynamic parameters of the soil, such as the velocities of the shear waves and surface waves (Scholte waves) of the upper soil are directly estimated from the time delays between signals recorded at the pile heads.  相似文献   

12.
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project, a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks, the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed, and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake, with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface, while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure, local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside, and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs, the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.  相似文献   

13.
Although the seismic actions generally consist of a combination of waves, which propagates with an angle of incidence not necessarily vertical, the common practice when analyzing the dynamic behavior of pile groups is based on the assumption of vertically incident wave fields. The aim of this paper is to analyze how the angle of incidence of SV waves affects the dynamic response of pile foundations and piled structures. A three-dimensional boundary element-finite element coupling formulation is used to compute impedances and kinematic interaction factors corresponding to several configurations of vertical pile groups embedded in an isotropic homogeneous linear viscoelastic half-space. These results, which are provided in ready-to-use dimensionless graphs, are used to determine the effective dynamic properties of an equivalent single-degree-of-freedom oscillator that reproduces, within the range where the peak response occurs, the response of slender and nonslender superstructures through a procedure based on a substructuring model. Results are expressed in terms of effective flexible-base period and damping as well as maximum shear force at the base of the structure. The relevance and main trends observed in the influence of the wavefront angle of incidence on the dynamic behavior of the superstructure are inferred from the presented results. It is found that effective damping is significantly affected by the variations of the wave angle of incidence. Furthermore, it comes out that the vertical incidence is not always the worst-case scenario.  相似文献   

14.
A numerical analysis of pile driving for tapered piles is presented in this paper. A three-dimensional finite difference analysis for tapered angle and geometry effects has been used on pile driving response of tapered piles. The simulation considers an idealization for pile–soil system in drivability. The vertical pile is assumed to have linear and elastic behavior. It is also assumed that the soil is elasto-plastic material and its failure stage is controlled using the Mohr–Coulomb failure criterion. At the soil–pile contact surfaces along the pile shaft and pile toe, slip is allowed to occur during the driving procedure using interface elements. Quiet boundaries are used to prevent waves traveling in the lateral and vertical directions for the soil. Cylindrical, fully tapered, and semi-tapered piles were analyzed. The results obtained from numerical analyses were compared with those obtained from available laboratory tests and also other available numerical data, resulting in a satisfactory agreement. The results have shown that among piles of the same length and material volume, with increasing the taper angle from zero (representing a cylindrical pile), the driving stresses decrease and the permanent pile toe settlement (set) increases. These are interesting in pile driving and are on the safe side for driven piles and increasing the driving efficiency. It has also been found that the geometry of the pile can generally influence the pile drivability. Generally speaking, tapered and partially tapered piles offer better drivability performance than cylindrical piles of the same volume and length.  相似文献   

15.
刘晶磊      张业荣      张冲冲      周玮浩     《世界地震工程》2022,38(3):162-170
本文采用模拟试验的方法,对分层土地基中双排隔振屏障对振动波的动力响应进行了探讨,并研究了桩长与土层分界面位置关系、激振频率对其隔振效果的影响作用,得出结论:(1)屏障前振动强度远大于屏障后振动强度,并随着振源距、激振频率、桩长的增加而下降,且屏障前出现明显振动增强现象,在激振频率80 Hz时产生振动峰值,振动强度在高频时基本稳定,继续增加激振频率,振动强度并不会发生明显变化。(2)屏障后中线左右2倍桩长范围内为整个隔振区域的薄弱区,其他区域则由包络线围成一个封闭有效隔振区。(3)屏障对中频和高频有更好的隔振效果,且桩长越大有效隔振面积越大,当桩长超过土层分界面时,有效隔振面积可达到53.25%~69.78%,但此时有效隔振面积增幅由原来的14.29%下降到11.64%,增幅降低了约3%。(4)未设屏障区振动强度较小,随激振频率小范围内浮动,在激振频率为30 Hz和80 Hz时取得振动峰值,且随着屏障布置方向减小,即靠近屏障一侧振动强度较强,远离屏障一侧振动强度较弱。  相似文献   

16.
The dynamic through–soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM–FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernoulli beams. This formulation has been enhanced to include the presence of linear superstructures founded on pile groups, so that structure–soil–structure interaction (SSSI) can be investigated making use of a direct methodology with an affordable number of degrees of freedom. The influence of SSSI on lateral spectral deformation, vertical and rotational response, and shear forces at pile heads, for several configurations of shear one-storey buildings, is addressed. Maximum response spectra are also presented. SSSI effects on groups of structures with similar dynamic characteristics have been found to be important. The system response can be either amplified or attenuated according to the distance between adjacent buildings, which has been related to dynamic properties of the overall system.  相似文献   

17.
模型储罐三维地震反应振动台试验研究   总被引:1,自引:0,他引:1  
针对立式钢制模型罐,进行了三维地震激励和一维地震激励振动台的动响应试验研究。结果表明:储罐在三维地震动激励下的反应与一维激励相比,加速度反应、罐壁的应变反应、储罐提离反应具有较明显的放大效应。位移反应在不同地震激励下,其放大效应不同,El Centro波激励下各测点三维激励下位移较一维激励下位移放大明显,Taft、天津波激励下各测点三维激励下位移较一维激励下位移有放大也有缩小,幅度均不大。由罐壁测点加速度功率谱分析表明:一维激励其峰值频率区域较为集中,主峰突出,能量主要集中于低频区;在三维地震激励下,频率峰值区域明显拉长,峰值点模糊,频率成份十分丰富,表现出多主峰的特点。  相似文献   

18.
In this article, the seismic records of Japan’s Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.  相似文献   

19.
We focus on the theoretical analysis of the resonance phenomena and the geometric attenuation behaviour of critical refracted shear waves propagating along a fluid‐filled borehole. Using integration by parts, we asymptotically expand the vertical branch‐cut integral of shear waves in an infinite series related to each order of the derivative of the response function of the formation. It is proved that the vertical branch‐cut integral of shear waves at large offsets consists mainly of the contribution of the second asymptotic series, which is related to the first derivative of the response function of the formation at the shear branch point. Using the asymptotic expansion, we develop a simplified amplitude expression for shear waves, and the resonant frequency formula. The validity of the resonance frequencies obtained by the resonant frequency formula is verified numerically by comparison with the corresponding frequencies of the numerical integral results. We also give a rational explanation for the phenomenon of two peaks appearing within each resonant peak zone: i.e. that these are the contributions of the constructive interference of the shear waves and the mode poles.  相似文献   

20.
When analysing the seismic response of pile groups, a vertically‐incident wavefield is usually employed even though it does not necessarily correspond to the worst case scenario. This work aims to study the influences of both the type of seismic body wave and its angle of incidence on the dynamic response of pile foundations. To this end, the formulation of SV, SH and P obliquely‐incident waves is presented and implemented in a frequency‐domain boundary element‐finite element code for the dynamic analysis of pile foundations and piled structures. Results are presented in terms of bending moments at cap level of single piles and 3 × 3 pile groups, both in frequency and in time domains. It is found that, in general, the vertical incidence is not the most unfavourable situation. In particular, obliquely‐incident SV waves with angles of incidence smaller than the critical one, a situation in which the mechanism of propagation of the waves in the soil changes and surface waves appear, yield bending moments much larger than those obtained for vertically‐incident wavefields. It is also shown that the influence of pile‐to‐pile interaction on the kinematic bending moments becomes significant for non‐vertical incidence, especially for P and SV waves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号