首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.  相似文献   

2.
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M, 1.74 (± 0.15) R and 1.44 (± 0.09) M, 2.70 (± 0.16) R for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2  Gy, when compared to Geneva theoretical evolution models.  相似文献   

3.
We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of ΔT = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O’Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O’Connell effect is explained by the presence of a hot spot on the primary component.  相似文献   

4.
High precision photometry gathered from Kepler database and radial velocity measurements of the HV Cnc system found in the literature were simultaneously analyzed by the Wilson-Devinney (WD) code to better understand system parameters. Some physical quantities needed by the WD code in iterations, such as limb darkening coefficients, Kurucz’s model atmospheres, and blackbody approach were considered by using precise transmission curves of each Kepler channel. Therefore, we obtained a set of revised system parameters relative to the previous solution of Gökay et al. (2013) in which the results were based on the photometry of 2MASS archival data. In the present solution, we recognized a low amplitude (ΔmKepler ∼ 0.m001) brightening at the primary quadrature of the light curve. This excess light is modelled by considering a combination of ellipsoidality, reflection, and Doppler beaming effects. Consequently, we propose the system as a new candidate of Doppler beaming binary.According to the absolute parameters of the primary component, we discussed the evolutionary status of the blue straggler component in the system. Furthermore, on the basis of absolute parameters, distance estimation to the system is 827 ± 20 pc which supports that HV Cnc is very likely a member of M67 cluster.  相似文献   

5.
6.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

7.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The eclipsing and double-lined spectroscopic binary system V453 Cygni consists of two early B-type stars, one of which is nearing the terminal age main sequence and one which is roughly halfway through its main-sequence lifetime. Accurate measurements of the masses and radii of the two stars are available, which makes a detailed abundance analysis both more interesting and more precise than for isolated stars. We have reconstructed the spectra of the individual components of V453 Cyg from the observed composite spectra using the technique of spectral disentangling. From these disentangled spectra, we have obtained improved effective temperature measurements of  27 900 ± 400  and  26 200 ± 500 K  , for the primary and secondary stars, respectively, by fitting non local thermodynamic equilibrium theoretical line profiles to the hydrogen Balmer lines. Armed with these high-precision effective temperatures and the accurately known surface gravities of the stars we have obtained the abundances of helium and metallic elements. A detailed abundance analysis of the primary star shows a normal (solar) helium abundance if the microturbulence velocity derived from metallic lines is used. The elemental abundances show no indication that CNO-processed material is present in the photosphere of this high-mass terminal age main-sequence star. The elemental abundances of the secondary star were derived by a differential study against a template spectrum of a star with similar characteristics. Both the primary and secondary components display elemental abundances which are in the ranges observed in the Galactic OB stars.  相似文献   

9.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Archival Hubble Space Telescope (HST) data have been used for the photometry of stars in blue compact dwarf (BCD) galaxies of the IZw18 system. Applying the spatial selection of stars, we have detected red giants, stars older than 1–2 Gyr, in the galaxies. These red giants have allowed the distance to IZw18 to be reliably determined for the first time: D = 13.9 ± 1.2 Mpc. The presence of old stars in the galaxies of the IZw18 system refutes the hypothesis about the observed primary star formation in these galaxies.  相似文献   

11.
A phenomenological model for V 361 Lyr is proposed. Probably it is a binary system which consists of a mass accreting primary star with mass of about M1 ≈ 0·81 M⊙ and radius R1 ≈ (6.1 ± 0·4) · 1010 cm and a mass losing secondary with about M2 ≈ 0·77 M⊙ and R2 ≈ 5.8 · 1010 cm. The secondary fills its Roche lobe, but the primary is something smaller than this lobe, contrary to the models of W UMa-type systems. So the hot spot appears in the atmosphere of the primary, but not in a disk, like in cataclysmic variables. The luminosity of the hot spot, L = (6-15) · 1032 erg/s, is large enough to be the main emission source of the system in visible light. So phenomenologically the object may be somewhat between W UMa-type stars and cataclysmic variables.  相似文献   

12.
We report the physical and orbital parameters of the visible component of the spectroscopic binary HD37737 (m V = 8.03). The observations were performed with the 1.2-m telescope of the Kourovka Astronomical Observatory of the Ural Federal University in 2012 and the 6-m BTA telescope of the SAO RAS in 2007 and 2009. Radial velocities were measured separately from each spectral line of the list by the cross-correlation method with a synthetic spectrum. The latter was calculated using the grids of non-LTE model atmospheres with solar chemical compositions. A significant difference in the epochs of observations (2005–2012) allowed to refine the orbital period of the star (7 · d 84705) and the orbital elements of the binary system. We obtained an estimate of the mass function f(m) = 0.23 ± 0.02M . The best agreement between the synthetic and observed spectra is achieved at T eff = 30 000 K and log g = 3.50 according to the observations on both instruments. The obtained parameters correspond to a star of spectral type O9.5 III, with mass estimated at 26 ± 2M . The minimum mass estimate of the secondary component of the binary is 6.2 ± 0.5M . We have discovered a fact that the velocities, obtained from different spectral lines, differ, which is typical for giant stars. Engaging additional spectra, obtained in 2005 with the 2.1-m KPNO telescope, we investigated the effect of this fact on the estimate of the speed of the system’s center of mass. The difference in the velocities of various lines is approximately the same in the spectra, obtained at all the three instruments. The obtained ratios suggest that the deeper layers of the atmosphere of the star are moving with a greater velocity than the outer layers. Depending on the line, the estimate of the heliocentric velocity of the binary’s center of mass varies in the range from ?11 to 1 km/s.  相似文献   

13.
We present new B- and V-band photometry of the W UMa-type binary system QX And, which is a member of the open cluster NGC 752. Revised orbital period and new ephemerides were given for the binary system based on the data of times of light minima. The result of a period analysis reveals that the system is undergoing a continuous orbital period increase during the past decades. The rate of period increasing turns out to be about 2.7 × 10?7 d yr?1. With the Wilson–Devinney code, a photometric solution is computed. It yields a contact configuration for the system with a filling factor of 0.361. Combining the results from the photometric solution along with that from the radial-velocity observations, we have determined the absolute parameters for the two components of the system. The masses, radii and luminosity of the primary and secondary stars are calculated as 1.43 ± 0.04 M, 1.45 ± 0.09 R, 2.87 ± 0.40 L and 0.44 ± 0.02 M, 0.87 ± 0.05 R, 0.99 ± 0.13 L, respectively. The evolutionary status and physical nature of the contact binary system were discussed compared with the theoretical models.  相似文献   

14.
New and existing photometry for the G0 Ia supergiant HD 18391 is analyzed in order to confirm the nature of the variability previously detected in the star, which lies off the hot edge of the Cepheid instability strip. Small‐amplitude variability at a level of δV = 0.016 ± 0.002 is indicated, with a period of P = 123d.04 ± 0d.06. A weaker second signal may be present at P = 177d.84 ± 0d.18 with δV = 0.007 ± 0.002, likely corresponding to fundamental mode pulsation if the primary signal represents overtone pulsation (123.04/177.84 = 0.69). The star, with a spectroscopic reddening of EB–V = 1.02 ± 0.003, is associated with heavily‐reddened B‐type stars in its immediate vicinity that appear to be outlying members of an anonymous young cluster centered ∼10′ to the west and 1661 ± 73 pc distant. The cluster has nuclear and coronal radii of rn = 3.5′ and Rc = 14′, respectively, while the parameters for HD 18391 derived from membership in the cluster with its outlying B stars are consistent with those implied by its Cepheid‐like pulsation, provided that it follows the semi‐period‐luminosity relation expected of such objects. Its inferred luminosity as a cluster member is MV = –7.76 ± 0.10, its age (9 ± 1) × 106 years, and its evolutionary mass ∼19 M. HD 18391 is not a classical Cepheid, yet it follows the Cepheid period‐luminosity relation closely, much like another Cepheid impostor, V810 Cen (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

17.
We succeeded in separating the absorption lines of both the primary C1 and the secondary C2 component in the spectra of the young massive binary θ 1 OriC (O6Vp + B0V, mass sum 44 ± 7M ), obtained during the period from November 1995 to February 2013 with different telescopes. These observations allowed us to derive, for the first time, the radial velocities of both components. The orbitalmotion of the secondary star is traced through its weak (the line depth is approximately 0.01–0.02) absorption lines of CII, NII, OII, Si III, which are broadened by fast rotation of the star. Silicon absorptions Si III λλ 4553, 4568, and 4575 are better suited for radial velocity measurements than the other lines. From the velocity curves, we obtained the systemic velocity of the system, γ = 31 ±2 kms?1, and semi-amplitudes of the C1 and C2 velocities: K 1 = 15 ± 2 kms?1, K 2 = 43 ± 3 kms?1. This leads to individual component masses of M 1 = 33 ± 5 M and M 2 = 11 ± 5 M , based on the adopted mass sum. At present, the combined spectroscopic-interferometric orbital solution cannot be obtained because of the large scatter of velocity measurements caused by chaotic line shifts in the spectrum of the primary star and by the weakness of wide absorptions from the secondary. New spectroscopy with a resolution of R ≥ 30000 and S/N ratio over 200 performed in the period close to the periastron passage in the second half of 2013, as well as additional long-baseline interferometry, will be decisive in refining the parameters of θ 1 OriC. We expect that as a result of this campaign, masses and luminosities of the components will be determined with an accuracy of 2–3%.  相似文献   

18.
Thirteen high-dispersion spectrographs of the eclipsing binary star SZ Cam have been studied with a view of determining more accurate information on: (i) the spectral type and luminosity classifications, (ii) absolute parameters for the component stars, (iii) the stellar environment of SZ Cam. The main results in these categories are as follows: (i) O9.5 Vnk, (ii)m g=19±2M ,m s=6.5±1M ;r g=9.7±3.6R ,r s=4.8±1.7R ;T e~30000 K,T e~23000 K; (iii) there is a local concentration of absorbing material which may reach a density of 2M pc?3, and the distance of the star is found to be 600±150 pc. The determined overluminosity of the secondary star and the local concentration of absorbing material are two topics which provide the basis for a discussion section.  相似文献   

19.
The beaming effect (aka Doppler boosting) induces a variation in the observed flux of a luminous object, following its observed radial velocity variation. We describe a photometric signal induced by the beaming effect during eclipse of binary systems, where the stellar components are late type Sun-like stars. The shape of this signal is sensitive to the angle between the eclipsed star’s spin axis and the orbital angular momentum axis, thereby allowing its measurement. We show that during eclipse there are in fact two effects, superimposed on the known eclipse light curve. One effect is produced by the rotation of the eclipsed star, and is the photometric analog of the spectroscopic Rossiter-McLaughlin effect, thereby it contains information about the sky-projected spin-orbit angle. The other effect is produced by the varying weighted difference, during eclipse, between the beaming signals of the two stars. We give approximated analytic expressions for the amplitudes of the two effects, and present a numerical simulation where we show the light curves for the two effects for various orbital orientations, for a low mass ratio stellar eclipsing binary system. We show that although the overall signal is small, it can be detected in the primary eclipse when using Kepler Long Cadence data of bright systems accumulated over the mission lifetime.  相似文献   

20.
In this paper of the series we analyze three stars listed among stars with discrepant v sin i: HD9531 and HD31592, which also show radial velocity variations inherent to spectroscopic binaries, and HD129174 which is an Mn-type star with a possible magnetic field. In HD9531 we confirm the radial velocity derived fromthe hydrogen lines as well as fromthe Ca II line at 3933 Å as variable. The profile of the calcium line also appears variable, and with the estimated magnetic induction Be = ?630 ± 1340 G, this suggests that the abundance of calcium possibly varies over the surface of the star. We identified the lines of the secondary component in the spectrum of HD31592 revealing thus it is an SB2 binary with B9.5V and A0V components. While the primary star rotates with v sin i = 50 km s?1, the secondary star is faster with v sin i = 170 km s?1. We find that only 60% of the Mn lines identified in the spectrum of HD129174 can be fitted with a unique abundance value, whereas the remaining lines are stronger or fainter. We also identified two Xe II lines at 5339.33 Å and 5419.15 Å and estimated their log g f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号