首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work is to develope explicit analytical expressions for the small amplitude orbits of the infinitesimal mass about the equilibrium points in the elliptic restricted three body problem. To handle this dynamical problem, the Hamiltonian for the elliptic problem is formed with the true anomaly and then with the eccentric anomaly as independent variables. The origin is then transformed to a fixed point and the Hamiltonian is developed up to O(4) in the eccentricity, e, (which plays the role of the small parameter of the problem) of the primaries. The integration of the model problem under consideration is undertaken by means of a perturbation technique based on Lie series developments, which leads to the solution of the canonical equations of motion.  相似文献   

2.
This paper builds upon the work of Palmer and Imre exploring the relative motion of satellites on neighbouring Keplerian orbits. We make use of a general geometrical setting from Hamiltonian systems theory to obtain analytical solutions of the variational Kepler equations in an Earth centred inertial coordinate frame in terms of the relevant conserved quantities: relative energy, relative angular momentum and the relative eccentricity vector. The paper extends the work on relative satellite motion by providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, including the zero angular momentum case. The geometrical framework assists the design of complex formation flying trajectories. This is demonstrated by the construction of a tetrahedral formation, described through the relevant conserved quantities, for which the satellites are on highly eccentric orbits around the Sun to visit the Kuiper belt.  相似文献   

3.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

4.
Planetary, stellar and galactic physics often rely on the general restricted gravitational $N$ -body problem to model the motion of a small-mass object under the influence of much more massive objects. Here, I formulate the general restricted problem entirely and specifically in terms of the commonly used orbital elements of semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre, and true anomaly, without any assumptions about their magnitudes. I derive the equations of motion in the general, unaveraged case, as well as specific cases, with respect to both a bodycentric and barycentric origin. I then reduce the equations to three-body systems, and present compact singly- and doubly-averaged expressions which can be readily applied to systems of interest. This method recovers classic Lidov–Kozai and Laplace–Lagrange theory in the test particle limit to any order, but with fewer assumptions, and reveals a complete analytic solution for the averaged planetary pericentre precession in coplanar circular circumbinary systems to at least the first three nonzero orders in semimajor axis ratio. Finally, I show how the unaveraged equations may be used to express resonant angle evolution in an explicit manner that is not subject to expansions of eccentricity and inclination about small nor any other values.  相似文献   

5.
We consider the non-canonical Hamiltonian dynamics of a gyrostat in Newtonian interaction with n spherical rigid bodies. Using the symmetries of the system we carry out two reductions. Then, working in the reduced problem, we obtain the equations of motion, a Casimir function of the system and the equations that determine the relative equilibria. Global conditions for existence of relative equilibria are given. Besides, we give the variational characterization of these equilibria and three invariant manifolds of the problem; being calculated the equations of motion in these manifolds, which are described by means of a canonical Hamiltonian system. We give some Eulerian and Lagrangian equilibria for the four body problem with a gyrostat. Finally, certain classical problems of Celestial Mechanics are generalized.  相似文献   

6.
Using Hamiltonian formalism the translational-rotational motion of a satellite is studied near a resonance considering the orbital and rotational motions. A first order perturbation theory is derived by Hori's transformation in order to eliminate short and long periodic terms, preserving in the new Hamiltonian secular and resonant terms. This theory is again applied to study the resonant system whose analysis lead us to a system of equations equivalent to the equations of a simple pendulum which is integrable in terms of elliptical integrals.  相似文献   

7.
The planar motion of a Trojan asteroid is considered within the framework of the elliptic restricted three-body problem. The solution is derived asymptotically to second order taking the square root of the Jupiter-Sun mass ratio and the orbital eccentricity of Jupiter as first order quantities. The results are given in explicit form for the coordinates as functions of the true anomaly of Jupiter including both short and long periodic terms resulting from the orbital accentricity of Jupiter.  相似文献   

8.
Within the context of the restricted problem of three bodies, we wish to show the effects, caused by varying the mass ratio of the primaries and the eccentricity of their orbits, upon periodic orbits of the infinitesimal mass that are numerical continuations of circular orbits in the ordinary problem of two bodies. A recursive-power-series technique is used to integrate numerically the equations of motion as well as the first variational equations to generate a two-parameter family of periodic orbits and to identify the linear stability characteristics thereof. Seven such families (comprised of a total of more than 2000 orbits) with equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the orbits of the primaries in a range 0.0 to 0.6 are investigated. Stable orbits are associated with large distances of the infinitesimal mass from the perturbing primary, with nearly circular motion of the primaries, and, to a slightly lesser extent, with small mass ratios of the primaries.Conversely, unstable orbits for the infinitesimal mass are associated with small distances from the perturbing primary, with highly elliptic orbits of the primaries, and with large mass ratios.  相似文献   

9.
In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff–Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff’s equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.  相似文献   

10.
We derive the exact equations of motion for the circular restricted three-body problem in cylindrical curvilinear coordinates together with a number of useful analytical relations linking curvilinear coordinates and classical orbital elements. The equations of motion can be seen as a generalization of Hill’s problem after including all neglected nonlinear terms. As an application of the method, we obtain a new expression for the averaged third-body disturbing function including eccentricity and inclination terms. We employ the latter to study the dynamics of the guiding center for the problem of circular coorbital motion providing an extension of some results in the literature.  相似文献   

11.
We eliminate the 1:2 critical terms — after a previous elimination of the short period terms — in the Hamiltonian of a first order U-N theory. We take into account terms of degree 0, 1, 2, 3, 4 in the eccentricity-inclination. We apply for this elimination the Hori-Lie technique through the Poincaré canonical variables and the Jacobi coordinates. The purely principal first order secular U-N Hamiltonian admits a complete solution. We obtained the U-N equations of motion generated by the principal first order long period U-N Hamiltonian which will be solved later. This part III is closely related to the two previous papers (Kamel, 1982, 1983).  相似文献   

12.
At critical mass the triangular equilibria in the planar restricted three-body problem, when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, are in general unstable due to the presence of secular terms in the solutions of linearized equations of motion in the vicinity of these points. Existence of retrograde elliptic periodic orbits is established through suitable velocity components. The eccentricity of these orbits increases with the oblateness.  相似文献   

13.
An approximate solution of the encounter problem of two small satellites describing initially elliptical orbits around a massive oblate primary is obtained. The equations of motion of the center of mass of the two masses are developed in the most general form without any restrictions on the orbital elements. The method of multiple scales which seeks a solution whose behavior depends on several time scales is used. To overcome the singularity the equations of motion are transformed to the Struble variables. An analytical second order theory of the evolution dynamics is obtained. A MATHEMATICA program is constructed. The evolution dynamics of the orbital parameters between the perturbed and the unperturbed cases are plotted. The effect of changing eccentricity and changing inclination on the orbital parameters are highlighted.  相似文献   

14.
The Hamiltonian of three point masses is averaged over fast variablel and ll (mean anomalies) The problem is non-planar and it is assumed that two of the bodies form a close pair (stellar three-body problem). Only terms up to the order of (a/á)4 are taken into account in the Hamiltonian, wherea andá are the corresponding semi-major axes. Employing the method of elimination of the nodes, the problem may be reduced to one degree of freedom. Assuming in addition that the angular momentum of the close binary is much smaller than the angular momentum of the motion of the binary around a third body, we were able to solve the equation for the eccentricity changes in terms of the Jacobian elliptic functions.  相似文献   

15.
Hamiltonian mechanics is applied to the problem of the rotation of the elastic Earth. We first show the process for the formulation of the Hamiltonian for rotation of a deformable body and the derivation of the equations of motion from it. Then, based on a simple model of deformation, the solution is given for the period of Euler motion, UT1 and the nutation of the elastic Earth. In particular it is shown that the elasticity of the Earth acts on the nutation so as to decrease the Oppolzer terms of the nutation of the rigid Earth by about 30 per cent. The solution is in good agreement with results which have been obtained by other, different approaches.  相似文献   

16.
We consider secular perturbations of nearly Keplerian two-body motion under a perturbing potential that can be approximated to sufficient accuracy by expanding it to second order in the coordinates. After averaging over time to obtain the secular Hamiltonian, we use angular momentum and eccentricity vectors as elements. The method of variation of constants then leads to a set of equations of motion that are simple and regular, thus allowing efficient numerical integration. Some possible applications are briefly described.  相似文献   

17.
C.D. Murray  K. Fox 《Icarus》1984,59(2):221-233
The motion of asteroids near the 3:1 Jovian resonance in the restricted planar case is studied using three numerical methods: (a) integrating the full equations of motion, (b) integrating the averaged equations of motion, and (c) using an algebraic mapping recently developed by Wisdom (1982, Astron. J.87, 577–593). The relative merits of each method are investigated. It is concluded that in the regular regions of the phase space, methods b and c give excellent agreement with each other and that provided the maximum eccentricity emax < 0.4 differences with the exact solution (method a) are <6% in emax and <27% in the period of the oscillations. The additions of higher order terms in the expansion of the averaged Hamiltonian provides marginally better agreement with the full integration. This is probably due to the slow convergence of the expansion of the disturbing function at large eccentricities (e > 0.3). In chaotic regions of the phase there is little agreement between the orbital elements at any given time calculated by each method. However, all methods reflect the qualitative behavior of the chaotic trajectories and give good agreement on the bounds of the motion. Since the map is at least 200 times faster than solving the full equations of motion it is an efficient method of rapidly exploring accessible regions of the chaotic phase space.  相似文献   

18.
In order to retain separability in the Vinti theory of Earth satellite motion when a nonconservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In this approach, the Hamiltonian is preserved in form, and remains the total energy, but the initial or boundary conditions and hence the Jacobi constants of the motion advance with time through the variational equations. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which adheres to tabular data at all, altitudes and simultaneously reduces the variational equations to definite integrals with closed form evaluations whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program.Results of this technique for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by this theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.  相似文献   

19.
Based on the ideas of Lyapunov’s method, we construct a family of symmetric periodic solutions of the Hill problem averaged over the motion of a zero-mass point (a satellite). The low eccentricity of the satellite orbit and the sine of its inclination to the plane of motion of the perturbing body are parameters of the family. We compare the analytical solution with numerical solutions of the averaged evolutionary system and the rigorous (nonaveraged) equations of the restricted circular three-body problem.  相似文献   

20.
The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号