首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   

2.
The Kangan Permo-Triassic brine aquifer and the overlying gas reservoir in the southern Iran are located in Kangan and Dalan Formations, consisting dominantly of limestone, dolomite, and to a lesser extent, shale and anhydrite. The gasfield, 2,900 m in depth and is exploited by 36 wells, some of which produce high salinity water. The produced water gradually changed from fresh to saline, causing severe corrosion in the pipelines and well head facilities. The present research aims to identify the origin of this saline water (brine), as a vital step to manage saline water issues. The major and minor ions, as well as δ2H, δ18O and δ37Cl isotopes were measured in the Kangan aquifer water and/or the saline produced waters. The potential processes causing salinity can be halite dissolution, membrane filtration, and evaporation of water. The potential sources of water may be meteoric, present or paleo-seawater. The Na/Cl and I/Cl ratios versus Cl? concentration preclude halite dissolution. Concentrations of Cl, Na, and total dissolved solid were compared with Br concentration, indicating that the evaporated ancient seawater trapped in the structure is the cause of salinization. δ18O isotope enrichment in the Kangan aquifer water is due to both seawater evaporation and interaction with carbonate rocks. The δ37Cl isotope content also supports the idea of evaporated ancient seawater as the origin of salinity. Membrane filtration is rejected as a possible source of salinity based on the hydrochemistry data, the δ18O value, and incapability of this process to dramatically enhance salinity up to the observed value of 330,000 mg/L. The overlaying impermeable formations, high pressure in the gas reservoir, and the presence of a cap rock above the Kangan gasfield, all prevent the downward flow of meteoric and Persian Gulf waters into the Kangan aquifer. The evaporated ancient seawater is autochthonous, because the Kangan brine aquifer was formed by entrapment of brine seawater during the deposition of carbonates, gypsum, and minor clastic rocks in a lagoon and sabkha environment. The reliability of determining the source of salinity in a deep complicated inaccessible high-pressure aquifer can be improved by combining various methods of hydrochemistry, isotope, hydrodynamics, hydrogeology and geological settings.  相似文献   

3.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

4.
Gaza central seawater desalination plant is a promising solution to alleviate the problem of water crisis in the Gaza Strip. The plant in the short term, phase (I), will desalinate seawater for potable uses with a capacity of 55 million cubic meters per year, while in the long term, phase (II), the plant capacity will be doubled to 110 million cubic meters per year of freshwater. As a product from the reverse osmosis process, a huge amount of brine with salinity reaches to 75,000 mg/L will be redirected to seawater; nearly 12,200 m3/h of brine will be rejected from phase (I) while in the long term, a brine flow rate of 24,400 m3/h will be disposed from phase (II). In order to minimize the negative impacts of the rejected brine on the marine environment, it is urgent to modeling numerically the impact of the discharged brine through various disposal systems to define the most environmental system. Various scenarios were defined and simulated using CORMIX model to study the efficiencies of onshore surface open channel, offshore submerged single port as well as offshore submerged multiport outfalls taking salinity variations as an indicator. Sensitivity analysis was conducted to identify the most influencing input parameters on the simulation results as well as to evaluate the optimal environmental disposal system which can mitigate the adverse impacts of brine on the marine ecosystem as much as possible in the worst seawater conditions. The simulation results showed that the discharge via surface open channel is not environmentally feasible where the seawater salinity rose by more than 2000 mg/L at RMZ. The single-port scenario can meet the regulations at RMZ but the standard at GMZ was not met, where the rejected brine from phase (I) through single port at 1500 m offshore raises the seawater salinity at GMZ by more than 600  mg/L. The staged multiport outfall, capped by 24 ports, achieves acceptable brine dilution at seawater depth of about 7.5  m, and in the worst ambient conditions in the case of phase (II) in operation, the brine’s excess salinity was 536, 497, and 379 mg/L above the salinity of seawater at RMZ, GMZ, and ROI, respectively.  相似文献   

5.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

6.
Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada “single-well method” (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).  相似文献   

7.
Cation and anion concentrations and oxygen and hydrogen isotopic ratios of brines in the Asmari Formation (Oligocene–early Miocene) from the Marun oil field of southwest Iran were measured to identify the origin of these brines (e.g. salt dissolution vs. seawater evaporation) as well as the involvement of water–rock reaction processes in their evolution. Marun brines are characterized by having higher concentrations of calcium (11 000–20 000 mg/L), chlorine (120 000–160 000 mg/L) and bromide (600–1000 mg/L) compared to modern seawater. Samples are also enriched in 18O relative to seawater, fall to the right of the Global Meteoric Water Line and local rain water, and plot close to the halite brine trajectory on the δD versus δ18O diagram. Geochemical characteristics of Marun brines are inconsistent with a meteoric origin, but instead correspond to residual evaporated seawater modified by water–rock interaction, most significantly dolomitization. In addition, anhydrite precipitation or sulphate reduction appears to be important in chemical modification of the Marun brines, as indicated by lower sulphate contents relative to evaporated seawater. Extensive dolomitization, the presence of anhydrite nodules and high salinity fluid inclusions in the upper parts of the Asmari Formation fit a model whereby the Marun brines likely originated from the seepage reflux of concentrated seawater during the deposition of the overlying Gachsaran Formation evaporites in the Miocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Physical and chemical parameters were measured in a subtropical estuary with a blind river source in southwest Florida, United States, to assess seasonal discharge of overland flow and groundwater in hydrologic mixing. Water temperature, pH, salinity, alkalinity, dissolved inorganic carbon (DIC), δ18O, and δ13CDIC varied significantly due to seasonal rainfall and climate. Axial distribution of the physical and chemical parameters constrained by tidal conditions during sampling showed that river water at low tide was a mixture of freshwater from overland flow and saline ground-water in the wet season and mostly saline groundwater in the dry season. Relationships between salinity and temperature, δ18O, and DIC for both the dry and wet seasons showed that DIC was most sensitive to seawater mixing in the estuary as DIC changed in concentration between values measured in river water at the tidal front to the most seaward station. A salinity-δ13CDIC model was able to describe seawater mixing in the estuary for the wet season but not for the dry season because river water salinity was higher than that of seawater and the salinity gradient between seawater and river water was small. A DIC-δ13CDIC mixing model was able to describe mixing of carbon from sheet flow and river water at low tide, and river water and seawater at high tide for both wet and dry seasons. The DIC-δ13CDIC model was able to predict the seawater end member DIC for the wet season. The model was not able to predict the seawater end member DIC for the dry season data due to secondary physical and biogeochemical processes that altered estuarine DIC prior to mixing with seawater. The results of this study suggest that DIC and δ13CDIC can provide additional insights into mixing of river water and seawater in estuaries during periods where small salinity gradients between river water and seawater and higher river water salinities preclude the use of salinity-carbon models.  相似文献   

9.
Shallow estuarine lagoons characterize >70 % of the eastern Alaskan Beaufort Sea coastline and, like temperate and tropical lagoons, support diverse and productive biological communities. These lagoons experience large variations in temperature (?2 to 14 °C) and salinity (0 to >45) throughout the year. Unlike lower latitude coastal systems, transitions between seasons are physically extreme and event-driven. On Arctic coastlines, a brief summer open-water period is followed by a 9-month ice-covered period that concludes with a late-spring sea ice breakup and intense freshwater run-off. From 2011 to 2014, we examined interannual variations in water column physical structure (temperature, salinity, and δ18O) in five lagoons that differ with respect to their degree of exchange with adjacent marine waters and magnitude of freshwater inputs. Temperature, salinity, and source water composition (calculated using a salinity and δ18O mixing model) were variable in space and time. During sea ice breakup in June, water column δ18O and salinity measurements showed that low salinity waters originated from meteoric inputs (50–80 %; which include river inputs and direct precipitation) and sea ice melt (18–51 %). Following breakup, polar marine waters became prevalent within a mixed water column over the summer open-water period within all five lagoons (26–63 %). At the peak of ice-cover extent and thickness in April, marine water sources dominated (75–87 %) and hypersaline conditions developed in some lagoons. Seasonal runoff dynamics and differences in lagoon geomorphology (i.e., connectivity to the Beaufort Sea) are considered key potential drivers of observed salinity and source water variations.  相似文献   

10.
Oilfield brines (produced water) are produced as a waste product daily at the gathering centers (GCs) in Kuwait oilfields. The geochemical evolution of the water produced at the GC (fresh brine) to stagnant pit water (evaporate) has been investigated in the northern fields of Kuwait, and a model is presented showing time-dependent variations. Kuwait oilfield brines are globally similar to others in other large sedimentary basins (USA, Canada), but modifications have occurred due to seawater injection practices performed episodically during the oil extraction process. Brine water chemistry changes from generally average brine chemistry (based on cations and anions) to saturated mixture of seawater, oilfield brine, and anthropogenic chemical pollutants. The objective of this study was to harmonize the database of brine waters in terms of regional identity by comparison with oilfield brines elsewhere, identify water–rock interaction, and statistically treat daily recordings from the pits in order to identify injection peaks and troughs. Laboratory analysis of major and minor cations and anions from the Rawdatayn samples gave the following concentration ranges in parts per million (ppm): (Na+, 11,698–203,977), (Ca2+, 2,216–98,514), (Mg2+, 1,602–28,885), (K+, 1,528–16,573), (Sr2+, 70–502), (Ba2+, 0.01–18.04), (Fe2+, 0.01–8.93), (Li+, 0.09–6.48), (Si2+, 0.00–13.18), (B3+, 0.05–37.45), (SO 4 2+ , 330–3100). For the Sabriyah oilfield samples, the major and minor cations and anions concentration ranges in ppm are: (Na+, 9,807–274,947), (Ca2+, 2,555–77,992), (Mg2+, 1,415–28,183), (K+, 764–19,201), (Sr2+, 77.84–641), (Ba2+, 0.15–6.76), (Fe2+, 0.016–38.88), (Li+, 0.05–6.83), (Si2+, 0.0195–16.84), (B3+, 7.17–55.33), (SO 4 2+ , 44,812–135,264). The stable isotopic analysis of five samples indicates normal trends in oxygen and hydrogen isotopes that classify the waters as “connate” which follow an evaporation trend. Carbon isotopic signatures are normal for hydrocarbon fields and average out around GC15, δ18O‰?=?1.4, δD‰?=??10, δ13C‰?=??3.6; while for GC23, δ18O‰?=?2.3, δD‰?=??4, δ13C‰?=??2.5; for GC25, δ18O‰?=??2.0, δD‰?=??14, δ13C‰?=??4.6; for pit1, δ18O‰?=?2.3, δD‰?=??5, δ13C‰?=??18.3; and for pit 2, δ18O‰?=?2.5, δD‰?=??4, δ13C‰?=??17.8. Carbon isotope average values for all brine samples from the GCs is?=??56 which falls within normal hydrocarbon formation water category. Data spikes coincide with injection periods at the following times (A: May–Jun, 2006), (B: Sep–Oct, 2006), (C: Jan–Feb, 2007), (D: Mar, 2007), (E: May–Jun, 2007), (F: Feb, 2006), (G: Mar–Apr, 2006) and, subsequently the decay to “normal” brine occurs over a period of several weeks. The database was large enough to apply a principal component statistical analysis (PCA). PCA and geo-statistical techniques reveal several distinct population groups. The main chemical groups in the data are as follows: plateau, spike groups, and pit evaporation group. The spike periods correlate closely with seawater injection periods (Jan–Feb, Mar–Apr, May–Jun, and Sep–Oct). The pit chemistry reveals exceptionally high evaporation processes coinciding with summer peak temperature. PCA results show distinct groupings centered around the major elements reminiscent of other oilfields, but with the added evaporation trend strongly enhanced.  相似文献   

11.
Oxygen isotopes and strontium concentrations were used as geochemical tracers to discern the sources of water to Celestún Lagoon, a small subtropical estuary on the western side of the Yucatán Peninsula of Mexico. Celestún Lagoon is underlain by karstified limestone with numerous locations where groundwater is observed discharging directly to the lagoon. In this study, samples of groundwater, lagoon surface water, and seawater (SW) were collected in April 2008 and June 2009 and analyzed for salinity, stable isotopes of oxygen, and strontium (Sr2+) concentrations. These geochemical tracers were used in two tertiary mixing models to calculate the relative ratio inputs of fresh groundwater, brackish groundwater, and SW to the lagoon. Two sources of groundwater were found to contribute to the surface water in the lagoon; one fresh and the other brackish with an average salinity of 19 psu. The fresh groundwater had an oxygen isotopic signature (δ18O) and strontium concentration (Sr2+) of δ18O?=?-3.30‰ and Sr2+?=?0.03 mmol/l, respectively. The brackish groundwater observed in the northern end of the lagoon add a dissimilar oxygen isotopic signature and Sr2+ concentration of δ18O?=?3.01‰ and Sr2+?=?0.12 mmol/l, respectively. Local SW had an isotopic oxygen signature and Sr2+ concentration between the two fresher sources (δ18O?=?1.40‰, Sr2+?=?0.09 mmol/l). The lagoonwide results of the two tracer mixing models (δ18O and Sr2+) agreed well (within 5 %) and indicated a ratio of brackish groundwater–fresh groundwater– SW of 31 %–26 %–43 % (±5 %) for the Sr2+ model and 35 %–25 %–40 % (± 5 %) for the δ18O model. Brackish groundwater is dominant in the northern portion of the lagoon, while SW dominates the southern portion. Fresh groundwater discharge is a significant contributor of water along the entire eastern boundary of the lagoon where mangrove forests are the dominant vegetation.  相似文献   

12.
Cation and anion concentrations and boron isotopic ratio of brines in the Mishrif Formation (U. Campanian-Tuoronian) from North Rumaila, South Rumaila, Majnoon, Zubair, and West Qurna oilfields southern Iraq were investigated. The aims of this study are to define the type, origin of the oilfield waters, and its flow model in the subsurface oil traps. Mishrif brines are characterized by having higher concentrations of sodium (50,500–84,200 ppm), chlorine (102,100–161,500 ppm), and boron (21.9–31.1 ppm) with lower sulfate contents (187–1350 ppm) relative to the modern seawater. Samples have slightly depleted in δ 11B (35.4‰) relative to seawater fall near the seawater intrusion of the diagram Cl/Br Vs δ 11B and occupied the field of evaporated seawater on the diagrams of Cl vs B and 1/Br vs δ 11B. The brine of Na-chloride type is characteristics of the Mishrif reservoir in all oilfields except WQ which defined by facies of Na-Ca-chloride type. A weak acidic brine of a salinity six-time greater than seawater plays a role in generating the formation pressure and controlling the fluid flow. The reservoir rock-fluid interactions were interpreted using boron isotopes which eventually reveal an ongoing dilution process by the present seawater intrusion and injection water used for the secondary production under conditions of high-temperature digenetic reactions. The 11B in the oilfield water is resulted from uptake of the tetrahedral borate after precipitation of calcium carbonate, while 10B is sourced from the thermal maturation of organic matters.  相似文献   

13.
Authigenic carbonates and seep biota are archives of seepage history and record paleo-environmental conditions at seep sites. We obtained the timing of past methane release events at the northeastern slope of the South China Sea based on U/Th dating of seep carbonates and seep bivalve fragments from three sites located at 22°02′–22°09′N, 118°43′–118°52′E (water depths from 473 to 785 m). Also, we were able to reconstruct the paleo-bottom water temperatures by calculating the equilibrium temperature using the ages, the corresponding past δ18O of seawater (δ18Osw) and the δ18O of the selected samples formed in contact with bottom seawater with negligible deep fluid influence. A criterion consists of mineralogy, redox-sensitive trace elements and U/Th-isotope systematics is proposed to identify whether the samples were formed from pore water or have been influenced by deep fluid. Our results show that all methane release events occurred between 11.5 ± 0.2 and 144.5 ± 12.7 ka, when sea level was about 62–104 m lower than today. Enhanced methane release during low sea-level stands seems to be modulated by reduced hydrostatic pressure, increased incision of canyons and increased sediment loads. The calculated past bottom water temperature at one site (Site 3; water depth: 767–771 m) during low sea-level stands 11.5 and 65 ka ago ranges from 3.3 to 4.0 °C, i.e., 1.3 to 2.2 °C colder than at present. The reliability of δ18O of seep carbonates and bivalve shells as a proxy for bottom water temperatures is critically assessed in light of 18O-enriched fluids that might be emitted from gas hydrate and/or clay dehydration. Our approach provides for the first time an independent estimate of past bottom water temperatures of the upper continental slope of the South China Sea.  相似文献   

14.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

15.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

16.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

17.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

18.
Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ~1,400 chemical analyses and ~90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370– 600 mm/yr, respectively). Molar Cl/Br ratios (median 540–600), depleted δ2H and δ18O (?24.7‰, ?4.5‰) relative to seawater (Cl/Br ~655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (~100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.  相似文献   

19.
Porewaters from a variety of Recent, Pleistocene, and Eocene lithified marine carbonate frameworks displayed similar chemical characteristics: highly depleted concentrations of dissolved oxygen (>20 μM), elevated levels of dissolved methane (25-5000 nM), and near-seawater sulphate levels. These porewaters also had low pH values (7·5-7·9), and contained elevated concentrations of sulphide (4–10 μM), dissolved inorganic carbon (2·05–2·46 mM), and inorganic nutrients. Hydrocarbon composition data indicate that the methane is biogenic, whereas the methane δ13C values (–47·4 ± 2·7%0) suggest that it has been subject to oxidation. The porewater dissolved inorganic carbon δ13C values varied from –0·6 to –39%0, suggesting input of carbon dioxide from organic matter oxidation. We conclude that anaerobic diagenesis involving bacterial degradation of organic matter is a common process in lithified marine carbonates and hypothesize that it may be an important factor controlling their carbonate geochemistry.  相似文献   

20.
The density and compressibility of seawater solutions from 0 to 95 °C have been examined using the Pitzer equations. The apparent molal volumes (X = V) and compressibilities (X = κ) are in the form $$ X_{\phi } = \bar{X}^{0} + A_{X} I/(1.2 \, m)\ln (1 + 1.2 \, I^{0.5} ) + \, 2{\text{RT }}m \, (\beta^{(0)X} + \beta^{(1)X} g(y) + C^{X} m) $$ where $ \bar{X}^{0} $ is the partial molal volume or compressibility, I is the ionic strength, m is the molality of sea salt, AX is the Debye–Hückel slope for volume (X = V) or adiabatic compressibility (X = κ s), and g(y) = (2/y 2)[1 ? (1 + y) exp(?y)] where y = 2I 0.5. The values of the partial molal volume and compressibility ( $ \bar{X}^{0} $ ) and Pitzer parameters (β (0)X , β (1)X and C X ) are functions of temperature in the form $$ Y^{X} = \sum_{i} a_{i} (T-T_{\text{R}} )^{i} $$ where a i are adjustable parameters, T is the absolute temperature in Kelvin, and T R = 298.15 K is the reference temperature. The standard errors of the seawater fits for the specific volumes and adiabatic compressibilities are 5.35E?06 cm3 g?1 and 1.0E?09 bar?1, respectively. These equations can be combined with similar equations for the osmotic coefficient, enthalpy and heat capacity to define the thermodynamic properties of sea salt to high temperatures at one atm. The Pitzer equations for the major components of seawater have been used to estimate the density and compressibility of seawater to 95 °C. The results are in reasonable agreement with the measured values (0.010E?03 g cm?3 for density and 0.050E?06 bar?1 for compressibility) from 0 to 80 °C and salinities from 0 to 45 g kg?1. The results make it possible to estimate the density and compressibility of all natural waters of known composition over a wide range of temperature and salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号