首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):267-284
The Hauraki Gulf is a semi-enclosed sea next to the largest population centre in New Zealand, the Auckland metropolitan region. The potential tsunami hazard is of concern to regional and local planners around the Hauraki Gulf. The Hauraki Gulf has recorded 11 tsunamis and one meteorological tsunami (rissaga) since 1840.The historical tsunami data are relatively sparse, particularly for the largest events in 1868 and 1883. Moreover, local sources may produce damaging tsunamis but none has occurred during recorded history. Therefore numerical modelling of potential tsunami events provides a powerful tool to obtain data for planning purposes. Three main scenarios have been identified for numerical modelling:1. A teletsunami event from an earthquake off the West Coast of South America. Historically this region has produced the largest teletsunamis in the Hauraki Gulf.2. A tsunami generated by a local earthquake along the Kerepehi Fault. This fault bisects the Gulf, has been active during the last century at the southern inland end, and is overlain by a considerable thickness of soft sediment that may amplify the seismic waves.3. A tsunami generated by a volcanic eruption within the Auckland Volcanic Field. This field has involved a series of mainly monogenetic basaltic eruptions over the last 140,000 years. Many of these eruptions have involved phreatomagmatic eruptions around the coastal margins, or within the shallow waters close to Auckland.  相似文献   

2.
The earthquake we are dealing with occurred on December 28, 1908: because of the number of victims (about 60,000) and the extension of the destroyed area (6,000 km2), this earthquake with the epicentral MCS intensity XI may be considered the strongest event ever reported for Italy along with the 1693 eastern Sicily earthquake. The shock produced a large tsunami that caused severe damage and many victims. In all places the first sea movement was a withdrawal for a few minutes, followed by a flooding of the coast with at least three big waves. A post-event survey allowed to estimate flooding and run-up heights (more than 10 m in some places). In this work we perform some numerical simulations of the tsunami generation and propagation, taking into account different source faults: the model is based on the shallow water equations, solved numerically by means of a finiteelement method. The computational domain, covered by a mesh consisting of triangular elements, includes the Messina Straits and the sea facing the northeastern coast of Sicily and southern Calabria.  相似文献   

3.
Nutrient mass balance analyses are a way of obtaining ‘whole system’ viewpoints on coastal biogeochemical functions and their forcing. Seasonal mass balances are presented for four large bay systems in New Zealand (NZ), with the aim of showing how they can inform coastal management. Freshwater volumes, and surface and groundwater, wastewater and atmospheric inorganic and organic nitrogen (N) and phosphorus (P) were balanced with levels of salinity, N and P from ocean surveys, used to determine non-conservative N and P fluxes and, via stoichiometry, carbon (C) fluxes. For Golden and Tasman Bays and Hauraki Gulf, exchange with adjacent shelf waters usually dominated total N supply (80–85%). In contrast, for the Firth of Thames, 51% of total N and 85% of dissolved inorganic N supply originated from its agricultural catchment. Net ecosystem metabolism (NEM; balance of autotrophy and heterotrophy) of Golden and Tasman Bays and Hauraki Gulf was usually nearly balanced. In contrast, Firth NEM was highly seasonally variable, often exhibiting strong heterotrophy coincident with expression of respiration-related stressors (low O2 and high DIC/low pH). Denitrification accounted for about 51% of total N export across the four systems, signifying its importance as a eutrophication-regulating ecosystem service. Budgets made 12 years apart in the Firth showed decreased denitrification efficiency, coincident with large increases in system N and phytoplankton. The findings for land-ocean nutrient balance, NEM and denitrification showed how mass balance budgeting can inform coastal management, including inventories of nutrient inputs, balances of oceanic and terrestrial nutrient loading, and potential for risk associated with biogeochemical responses.  相似文献   

4.
Barrier dunes on the northern side of the Tawharanui Peninsula, north of Auckland, New Zealand, appear to have been overtopped by extreme waves that have deposited two large sand washover lobes in a back beach wetland. Present-day storm surges and storm waves are incapable of overtopping the barrier dunes. However, historical data and numerical models indicate tsunamis are amplified by resonance within the adjacent bay and Hauraki Gulf. Further, the location of nearshore reefs in close proximity to the washover lobes suggests that the interaction between tsunamis and the reefs further amplified the waves at those locations. The presence of a distinctive pumice (Loisels Pumice) within the washover deposits suggests that the deposits are associated with a 15th Century eruption from the submarine Mt Healy caldera located northeast of New Zealand.  相似文献   

5.
Excellent deep ocean records have been obtained of two tsunamis recently generated in the Alaskan Bight on 30 November 1987 and 6 March 1988, providing the best available data set to date for comparison with tsunami generation/propagation models. Simulations have been performed with SWAN, a nonlinear shallow water numerical model, using source terms estimated by a seafloor deformation model based on the rectangular fault plane formalism. The tsunami waveform obtained from the model is quite sensitive to the specific source assumed. Significant differences were found between the computations and observations of the 30 November 1987 tsunami, suggesting inadequate knowledge of the source characteristics. Fair agreement was found between the data and the model for the first few waves of the 6 March 1988 tsunami. Model estimates of the seismic moment and total slip along the fault plane are also in fair agreement with those derived from the published Harvard centroid solution for the 6 March 1988 event, implying that the computed seafloor deformation does bear some similarity to the actual source.  相似文献   

6.
This study develops a method for estimating the number of casualties that may occur while people evacuate from an inundation zone when a tsunami has inundated an area. The method is based on a simple model of hydrodynamic forces as they affect the human body. The method uses a Tsunami casualty index (TCI) computed at each grid point of a numerical tsunami model to determine locations and times within the tsunami inundation zone where evacuation during the tsunami inundation is not possible and therefore where casualties are likely to occur. The locations and times can be combined with information about population density to compute the potential number of casualties. This information is useful in developing tsunami evacuation routes that avoid such locations. To illustrate the method, it is applied to the Seattle waterfront in Washington State, USA, that is under the threat of possible tsunami disasters due to Seattle Fault earthquakes. Preliminary results suggest that the tsunami casualties may occur within the Seattle waterfront for 15 min, during the time interval from 3 to 18 min after a large Seattle Fault tsunami is generated when the background tide level is mean high water.  相似文献   

7.
从海啸波作用下岸滩演变、床沙组成变化、建筑物周围淘刷和数值模拟研究4个方面,总结分析了国内外的研究现状和最新进展,指出可控环境下的实验和数值模拟研究相对较少、床沙组成变化缺乏关注、建筑物周围局部冲刷机理认识不足、缺少多尺度数值模拟计算等是当前研究存在的主要不足。在特大型波浪水槽内开展实验研究、发展多尺度混合数学模型、完善海啸波作用下的泥沙输移计算理论等是未来研究取得突破的关键方向。  相似文献   

8.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   

9.
Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.  相似文献   

10.
基于地震剖面的精细地质解释,识别出塔里木盆地巴楚隆起亚松迪断裂带及邻区三期冲断褶皱构造,并建立了其几何学模型。第一期活动的为沿中寒武统膏盐层滑脱的巴什托断裂,该断裂走向为NWW,形成于二叠纪之后、古近纪之前;第二期为基底卷入型的色力布亚断裂,该断裂走向为NNW,形成于晚中新世;第三期为分别沿中寒武统和古近系膏盐层滑脱的亚松迪深、浅层断裂,这两条断裂走向均为NW,形成于更新世-全新世。平面上,亚松迪断裂的发育位置受控于古近系膏盐层的分布范围。剖面上,与先存的巴什托断裂和色力布亚断裂的复合发育造成了亚松迪断裂带东、中、西三段不同的构造样式:东段发育断层传播褶皱(上)与突破型滑脱褶皱(下);中段发育断层传播褶皱(上)、突破型滑脱褶皱(中)和基底卷入构造(下);西段则发育滑脱褶皱(上)与断层转折褶皱(下),该段滑脱褶皱为亚松迪浅层断裂的西端点。最后,我们利用计算机数值模拟的方法对这三种冲断褶皱模型进行了验证。  相似文献   

11.
The explosion of the Montserrat volcano (Caribbean Sea) could trigger a major landslide and lead to the generation of a tsunami in the Caribbean Sea. In the worst case scenario, the volume of material reaching the sea has been estimated at 80 millions of cubic meters. The sliding of this mass and the generation of the associated tsunami have been simulated numerically, assuming that the debris behave like a heavy fluid flowing into the sea. The numerical model solves the 3D Navier-Stokes equations for a mixture composed of rocks and water. The generated water waves is then propagated around the coast of Montserrat by means of a shallow water model. The numerical results show that the water heights above sea level are higher than 5 meters within a radius of 5 km of the source.  相似文献   

12.
This paper discusses the applications of linear and nonlinear shallow water wave equations in practical tsunami simulations. We verify which hydrodynamic theory would be most appropriate for different ocean depths. The linear and nonlinear shallow water wave equations in describing tsunami wave propagation are compared for the China Sea. There is a critical zone between 400 and 500 m depth for employing linear and nonlinear models. Furthermore, the bottom frictional term exerts a noticeable influence on the propagation of the nonlinear waves in shallow water. We also apply different models based on these characteristics for forecasting potential seismogenic tsunamis along the Chinese coast. Our results indicate that tsunami waves can be modeled with linear theory with enough accuracy in South China Sea, but the nonlinear terms should not be neglected in the eastern China Sea region.  相似文献   

13.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

14.
A case study was conducted for the Thailand Khao Lak coast using a forward numerical model to understand uncertainties associated with interpreting tsunami deposits and relating them to their tsunami sources. We examined possible effects of the characteristics of tsunami source, multiple waves, sediment supply and local land usages. Numerical results showed that tsunami-deposit extent and thickness could be indicative of the slip value in the source earthquake near the surveyed coastal locations, provided that the sediment supply is unlimited and all the deposits are well preserved. Deposit thickness was found to be largely controlled by the local topography and could be easily modified by backwash flows or subsequent tsunami flows. Between deposit extent and deposit thickness, using deposit extent to interpret the characteristics of a tsunami source is preferable. The changing of land usages between two tsunami events could be another important factor that can significantly alter deposit thickness. There is a need to develop inversion models based on tsunami heights and/or run-up data for studying paleotsunamis.  相似文献   

15.
In the southern South–North Seismic Zone, China, seismic activity in the Yingjiang area of western Yunnan increased from December 2010, and eventually a destructive earthquake of Ms5.9 occurred near Yingjiang town on 10 March 2011. The focal mechanism and hypocenter location of the mainshock suggest that the Dayingjiang Fault was the site of the mainshock rupture. However, most of foreshocks and all aftershocks recorded by a portable seismic array located close to the mainshock occurred along the N–S-striking Sudian Fault, indicating that this fault had an important influence on these shocks. Coulomb stress calculations show that three strong(magnitude ≥5.0) earthquakes that occurred in the study region in 2008 increased the coulomb stress along the plane parallel to the Dayingjiang Fault. This supports the Dayingjiang Fault, and not the Sudian Fault, as the seismogenic fault of the 2011 Ms5.9 Yingjiang earthquake. The strong earthquakes in 2008 also increased the Coulomb stress at depths of ≤5 km along the entire Sudian Fault, and by doing so increased the shallow seismic activity along the fault. This explains why the foreshocks and aftershocks of the 2011 Yingjiang earthquake were located mostly on the Sudian Fault where it cuts the shallow crust. The earthquakes at the intersection of the Sudian and Dayingjiang faults are distributed mainly along a belt that dips to the southeast at ~40°, suggesting that the Dayingjiang Fault in the mainshock area also dips to the southeast at ~40°.  相似文献   

16.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   

17.
A suite of tsunami spaced evenly along the subduction zone to the south of Indonesia (the Sunda Arc) were numerically modelled in order to make a preliminary estimate of the level of threat faced by Western Australia from tsunami generated along the Arc. Offshore wave heights from these tsunami were predicted to be significantly higher along the northern part of the west Australian coast than for the rest of the coast south of the town of Exmouth. In particular, the area around Exmouth may face a higher tsunami hazard than other areas of the West Australian coast nearby. Large earthquakes offshore of Java and Sumbawa are likely to be a greater hazard to WA than those offshore of Sumatra. Our numerical models indicate that a magnitude 9 or above earthquake along the eastern part of the Sunda Arc has the potential to significantly impact a large part of the West Australian coastline. The Australian government reserves the right to retain a non-exclusive, royalty free license in and to any copyright.  相似文献   

18.
Integration of 11 types of data sets enabled us to determine the location, character and fault history of the southern extension of the Clarendon–Linden Fault System (CLF) in southwestern New York State. The data sets utilized include detailed stratigraphic and fracture measurements at more than 1000 sites, soil gas anomalies, seismic reflection profiles, well logs and lineaments on air photos, topographic maps, Landsat and SLAR images. The seismically active CLF consists of as many as 10 parallel, segmented faults across the fault system. The fault segments are truncated by NW-striking cross-strike discontinuities (CSDs). The faults of the CLF and intersecting CSDs form fault blocks that have semi-independent subsidence and uplift histories. East-dipping reflectors in the Precambrian basement indicate the southward continuation of thrusts of the intra-Grenvillian Elzevir–Frontenac Boundary Zone. These thrusts were reactivated during Iapetan rifting as normal (listric) growth faults. In Ordovician Black River to Trenton time, the southern CLF segments experienced a second phase of growth fault activity, with faults displaying a cumulative stratigraphic throw of as much as 170 m. Thrusting on the same east-dipping Precambrian reflectors typified the CLF in Taconic (post-Trenton) times. Detailed comparisons among the fault segments show that the fault activity in Silurian and Devonian times generally alternated between the western and central main faults. In Late Devonian time, the fault motion reversed from down-on-the-east to down-on-the-west about the time the Appalachian Basin axis passed across the CLF in its westward migration. The deep Precambrian faults of the CLF were thus reactivated as the Appalachian Basin developed in Acadian times. Finally, the CLF thrust fault imaged on seismic line CLF-1 offsets all bedrock (Devonian) units; thus, significant motion occurred along this fault during Late Acadian, or more likely, Alleghanian time.  相似文献   

19.
Guesmia  M.  Heinrich  Ph.  Mariotti  C. 《Natural Hazards》1998,17(1):31-46
On 28 February 1969, the coasts of Portugal, Spain and Morocco were affected by sea waves generated by a submarine earthquake (Ms = 7.3) with its epicenter located off Portugal. The propagation of this tsunami has been simulated by a finite element numerical model solving the Boussinesq equations. These equations have been discretized using the finite element Galerkin method and a Crank–Nicholson scheme in time. The model is validated by investigating the propagation of a solitary wave over a flat bottom. The grid sizes for the 1969 event have been determined by one-dimensional tests offshore and in shallow water regions. The two-dimensional simulation of the 1969 tsunami is carried out using the hydraulic source calculated from the geophysical model of Okada and seismic parameters of Fukao. The modeled waves are compared with the recorded ones with respect to travel times, maximum amplitudes and periods of the signal. The comparison between Boussinesq and shallow-water models shows that the effects of frequency dispersion are minor. Good agreement is found for most of the studied gauges.  相似文献   

20.
Estimating tsunami potential is anessential part of mitigating tsunami disasters. Weproposed a new method to estimate the far-fieldtsunami potential by assuming faultmodels on the Pacific Rim. We find thata tsunami that generates in the areas wherethere is no tsunami in the history can damagethe Japanese coast. This shows that it isimportant to estimate tsunami potential byassuming fault models other than the pastearthquake data.Another important activity to mitigate tsunamidisasters is to provide appropriatewarnings to coastal communities when dangerfrom a tsunami is imminent. We applied anew inversion method using wavelet transformto a part of the real-time tsunami forecastsystem for the Pacific. Because this inversionmethod does not require fault location, it ispossible to analyze a tsunami in real timewithout all seismic information. In order tocheck the usability of the system, anumerical simulation was executed assuming anearthquake at sea off Taiwan. The correlationcoefficient for the estimated initialwaveform to the assumed one was calculatedto be 0.78. It takes 90 min to capturetime-series waveform data from tsunamigauges and 5 sec to estimate the 2-D initialwaveform using the inversion method. After that,it takes 2 minutes to forecast thetsunami heights at the Japanese coast. Since thesum of these times is less than the 105minutes transit time of the tsunami fromTaiwan to Japan, it is possible to give a warningto the residents before the tsunami attacksthe Japanese coast. Comparing the tsunamiheights forecasted by this system with thosecalculated by the fault model, the averageerror was 0.39 m. The average error ofthe arrival time was 0.007 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号